Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 58
    Citation - Scopus: 77
    Electrospun Oxygen Scavenging Films of Poly(3-Hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications
    (Mdpi, 2018) Cherpinski, Adriane; Gozutok, Melike; Sasmazel, Hilal Turkoglu; Torres-Giner, Sergio; Lagaron, Jose M.
    This paper reports on the development and characterization of oxygen scavenging films made of poly(3-hydroxybutyrate) (PHB) containing palladium nanoparticles (PdNPs) prepared by electrospinning followed by annealing treatment at 160 degrees C. The PdNPs were modified with the intention to optimize their dispersion and distribution in PHB by means of two different surfactants permitted for food contact applications, i.e., hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS). Analysis of the morphology and characterization of the chemical, thermal, mechanical, and water and limonene vapor barrier properties and the oxygen scavenging capacity of the various PHB materials were carried out. From the results, it was seen that a better dispersion and distribution was obtained using CTAB as the dispersing aid. As a result, the PHB/PdNP nanocomposites containing CTAB provided also the best oxygen scavenging performance. These films offer a significant potential as new active coating or interlayer systems for application in the design of novel active food packaging structures.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 14
    Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization
    (Mdpi, 2021) Alazzawi, Marwa; Alsahib, Nabeel Kadim Abid; Sasmazel, Hilal Turkoglu
    Glycine (Gly), which is the simplest amino acid, induces the inflammation response and enhances bone mass density, and particularly its beta polymorph has superior mechanical and piezoelectric properties. Therefore, electrospinning of Gly with any polymer, including polyvinyl alcohol (PVA), has a great potential in biomedical applications, such as guided bone regeneration (GBR) application. However, their application is limited due to a fast degradation rate and undesirable mechanical and physical properties. Therefore, encapsulation of Gly and PVA fiber within a poly(epsilon-caprolactone) (PCL) shell provides a slower degradation rate and improves the mechanical, chemical, and physical properties. A membrane intended for GBR application is a barrier membrane used to guide alveolar bone regeneration by preventing fast-proliferating cells from growing into the bone defect site. In the present work, a core/shell nanofibrous membrane, composed of PCL as shell and PVA:Gly as core, was developed utilizing the coaxial electrospinning technique and characterized morphologically, mechanically, physically, chemically, and thermally. Moreover, the characterization results of the core/shell membrane were compared to monolithic electrospun PCL, PVA, and PVA:Gly fibrous membranes. The results showed that the core-shell membrane appears to be a good candidate for GBR application with a nano-scale fiber of 412 +/- 82 nm and microscale pore size of 6.803 +/- 0.035 mu m. Moreover, the wettability of 47.4 +/- 2.2 degrees contact angle (C.A) and mechanical properties of 135 +/- 3.05 MPa average modulus of elasticity, 4.57 +/- 0.04 MPa average ultimate tensile stress (UTS), and 39.43% +/- 0.58% average elongation at break are desirable and suitable for GBR application. Furthermore, the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results exhibited the formation of beta-Gly.
  • Review
    Citation - WoS: 61
    Citation - Scopus: 72
    Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation
    (Mdpi, 2021) Sasmazel, Hilal Turkoglu; Alazzawi, Marwa; Alsahib, Nabeel Kadim Abid
    Atmospheric plasma treatment is an effective and economical surface treatment technique. The main advantage of this technique is that the bulk properties of the material remain unchanged while the surface properties and biocompatibility are enhanced. Polymers are used in many biomedical applications; such as implants, because of their variable bulk properties. On the other hand, their surface properties are inadequate which demands certain surface treatments including atmospheric pressure plasma treatment. In biomedical applications, surface treatment is important to promote good cell adhesion, proliferation, and growth. This article aim is to give an overview of different atmospheric pressure plasma treatments of polymer surface, and their influence on cell-material interaction with different cell lines.
  • Article
    Citation - WoS: 34
    Citation - Scopus: 49
    Encapsulation of Β-Carotene by Emulsion Electrospraying Using Deep Eutectic Solvents
    (Mdpi, 2020) Ozan Basar, Ahmet; Prieto, Cristina; Durand, Erwann; Villeneuve, Pierre; Sasmazel, Hilal Turkoglu; Lagaron, Jose
    The encapsulation beta-carotene in whey protein concentrate (WPC) capsules through the emulsion electrospraying technique was studied, using deep eutectic solvents (DES) as solvents. These novel solvents are characterized by negligible volatility, a liquid state far below 0 degrees C, a broad range of polarity, high solubilization power strength for a wide range of compounds, especially poorly water-soluble compounds, high extraction ability, and high stabilization ability for some natural products. Four DES formulations were used, based on mixtures of choline chloride with water, propanediol, glucose, glycerol, or butanediol. beta-Carotene was successfully encapsulated in a solubilized form within WPC capsules; as a DES formulation with choline chloride and butanediol, the formulation produced capsules with the highest carotenoid loading capacity. SEM micrographs demonstrated that round and smooth capsules with sizes around 2 mu m were obtained. ATR-FTIR results showed the presence of DES in the WPC capsules, which indirectly anticipated the presence of beta-carotene in the WPC capsules. Stability against photo-oxidation studies confirmed the expected presence of the bioactive and revealed that solubilized beta-carotene loaded WPC capsules presented excellent photo-oxidation stability compared with free beta-carotene. The capsules developed here clearly show the significant potential of the combination of DES and electrospraying for the encapsulation and stabilization of highly insoluble bioactive compounds.
  • Article
    Citation - WoS: 27
    Citation - Scopus: 33
    Manufacturing of Zinc Oxide Nanoparticle (zno Np)-Loaded Polyvinyl Alcohol (pva) Nanostructured Mats Using ginger Extract for Tissue Engineering Applications
    (Mdpi, 2022) Izgis, Hursima; Ilhan, Elif; Kalkandelen, Cevriye; Celen, Emrah; Guncu, Mehmet Mucahit; Sasmazel, Hilal Turkoglu; Constantinescu, Gabriel
    In this research, as an alternative to chemical and physical methods, environmentally and cost-effective antimicrobial zinc oxide nanoparticles (ZnO NP) were produced by the green synthesis method. The current study focuses on the production of ZnO NP starting from adequate precursor and Zingiber officinale aqueous root extracts (ginger). The produced ZnO NP was loaded into electrospun nanofibers at different concentrations for various tissue engineering applications such as wound dressings. The produced ZnO NPs and ZnO NP-loaded nanofibers were examined by Scanning Electron Microscopy (SEM) for morphological assessments and Fourier-transform infrared spectrum (FT-IR) for chemical assessments. The disc diffusion method was used to test the antimicrobial activity of ZnO NP and ZnO NP-loaded nanofibers against three representatives strains, Escherichia coli (Gram-negative bacteria), Staphylococcus aureus (Gram-positive bacteria), and Candida albicans (fungi) microorganisms. The strength and stretching of the produced fibers were assessed using tensile tests. Since water absorption and weight loss behaviors are very important in tissue engineering applications, swelling and degradation analyses were applied to the produced nanofibers. Finally, the MTT test was applied to analyze biocompatibility. According to the findings, ZnO NP-loaded nanofibers were successfully synthesized using a green precipitation approach and can be employed in tissue engineering applications such as wound dressing.