Search Results

Now showing 1 - 10 of 33
  • Article
    Citation - WoS: 11
    Development of Antibacterial Composite Electrospun Chitosan-Coated Polypropylene Materials
    (Amer Scientific Publishers, 2018) Gozutok, Melike; Basar, Ahmet Ozan; Sasmazel, Hilal Turkoglu
    In this study, a natural antibacterial substance chitosan was coated with/without potassium sorbate (KS) (0.8% (w/w) of KS, 8% (w/v) chitosan) onto the polypropylene (PP) film by using electrospinning technique to obtain novel antibacterial composite materials for various applications such as wound dressing, tissue engineering, drug delivery and food packaging. Atmospheric pressure plasma surface treatment was applied onto polypropylene films in order to increase its wettability thus enhancing the adhesion capacity of the films and the optimum CA value was determined as 42.75 +/- 0.80 degrees. Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS) analyses were realized to observe the morphological changes and chemical properties of the samples, respectively. Contact angle measurements, tensile testing, oxygen and water vapor transmission rate analyses were performed to obtain wettability values, mechanical properties and WVTRs, respectively. The WVTR was increased by plasma treatment and addition of KS (from 14.264 +/- 0.214% to 21.020 +/- 0.659%). The desired antibacterial performance of the samples was assessed with Staphylococcus aureus and Escherichia coli by inhibition ratio calculation and disc diffusion assay. The highest inhibition ratios were found as 64% for S. aureus and 92% for E. coli for plasma-treated CS-KS-PP films.
  • Correction
    Influence of Water/O2 Plasma Treatment on Cellular Responses of Pcl and Pet Surfaces (vol 21, Pg 123, 2011)
    (Ios Press, 2011) Sasmazel, Hilal Turkoglu; Aday, Sezin; Manolache, Sorin; Gumusderelioglu, Menemse
    [No Abstract Available]
  • Article
    Citation - WoS: 58
    Citation - Scopus: 77
    Electrospun Oxygen Scavenging Films of Poly(3-Hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications
    (Mdpi, 2018) Cherpinski, Adriane; Gozutok, Melike; Sasmazel, Hilal Turkoglu; Torres-Giner, Sergio; Lagaron, Jose M.
    This paper reports on the development and characterization of oxygen scavenging films made of poly(3-hydroxybutyrate) (PHB) containing palladium nanoparticles (PdNPs) prepared by electrospinning followed by annealing treatment at 160 degrees C. The PdNPs were modified with the intention to optimize their dispersion and distribution in PHB by means of two different surfactants permitted for food contact applications, i.e., hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS). Analysis of the morphology and characterization of the chemical, thermal, mechanical, and water and limonene vapor barrier properties and the oxygen scavenging capacity of the various PHB materials were carried out. From the results, it was seen that a better dispersion and distribution was obtained using CTAB as the dispersing aid. As a result, the PHB/PdNP nanocomposites containing CTAB provided also the best oxygen scavenging performance. These films offer a significant potential as new active coating or interlayer systems for application in the design of novel active food packaging structures.
  • Article
    Citation - WoS: 45
    Citation - Scopus: 46
    Novel Hybrid Scaffolds for the Cultivation of Osteoblast Cells
    (Elsevier, 2011) Sasmazel, Hilal Turkoglu
    In this study, natural biodegradable polysaccharide, chitosan, and synthetic biodegradable polymer, poly(epsilon-caprolactone) (PCL) were used to prepare 3D, hybrid polymeric tissue scaffolds (PCL/chitosan blend and PCL/chitosan/PCL layer by layer scaffolds) by using the electrospinning technique. The hybrid scaffolds were developed through HA addition to accelerate osteoblast cell growth. Characteristic examinations of the scaffolds were performed by micrometer, SEM, contact angle measurement system, ATR-FTIR, tensile machine and swelling experiments. The thickness of all electrospun scaffolds was determined in the range of 0.010 +/- 0.001-0.012 +/- 0.002 mm. In order to optimize electrospinning processes, suitable bead-free and uniform scaffolds were selected by using SEM images. Blending of PCL with chitosan resulted in better hydrophilicity for the PCL/chitosan scaffolds. The characteristic peaks of PCL and chitosan in the blend and layer by layer nanofibers were observed. The PCL/chitosan/PCL layer by layer structure had higher elastic modulus and tensile strength values than both individual PCL and chitosan structures. The layer by layer scaffolds exhibited the PBS absorption values of 184.2; 197.2% which were higher than those of PCL scaffolds but lower than those of PCL/chitosan blend scaffolds. SaOs-2 osteosarcoma cell culture studies showed that the highest ALP activities belonged to novel PCL/chitosan/PCL layer by layer scaffolds meaning better cell differentiation on the surfaces. (C) 2011 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 35
    Citation - Scopus: 45
    Study on the Cytocompatibility, Mechanical and Antimicrobial Properties of 3d Printed Composite Scaffolds Based on Pva/ Gold Nanoparticles (aunp)/ Ampicillin (amp) for Bone Tissue Engineering
    (Elsevier, 2021) Topsakal, Aysenur; Midha, Swati; Yuca, Esra; Tukay, Ari; Sasmazel, Hilal Turkoglu; Kalaskar, Deepak M.; Gunduz, Oguzhan
    Over the years, gold nanoparticles (AuNP) have been widely used in several biomedical applications related to the diagnosis, drug delivery, bio-imaging, photo-thermal therapy and regenerative medicine, owing to their unique features such as surface plasmon resonance, fluorescence and easy surface functionality. Recent studies showed that gold nanoparticles display positive effect on osteogenic differentiation. In line with this effect, 3-Dimesional (3D) scaffolds that can be used in bone tissue were produced by exploiting the properties of gold nanoparticles that increase biocompatibility and support bone tissue development. In addition, ampicillin was added to the scaffolds containing gold nanoparticles as a model drug to improve its antimicrobial properties. The scaffolds were produced as composites of polyvinyl alcohol (PVA) main matrix as PVA, PVA/AuNP, PVA/Ampicillin (AMP) and PVA/AuNP/AMP. Scanning Electron Microscopy (SEM) Fourier Transform Infrared Spectroscopy (FTIR), tensile measurement tests, and in vitro applications of 3D scaffolds were performed. As depicted by SEM, scaffolds were produced at pore sizes appropriate for bone tissue regeneration. According to FTIR results, there was no modification observed in the AMP, PVA and gold nanoparticles due to mixing in the resultant scaffolds. In vitro results show that 3D printed composite scaffold based on PVA/AuNP/AMP are biocompatible, osteo-inductive and exhibit antimicrobial properties, compared to PVA scaffolds. This study has implications for addressing infections during orthopedic surgeries. The PVA-based gold nanoparticle 3D tissue scaffold study containing ampicillin covers a new study compared to other articles based on gold nanoparticles.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 19
    Effects of Nozzle Type Atmospheric Dry Air Plasma on L929 Fibroblast Cells Hybrid Poly (ε-caprolactone)/Chitosan (ε-Caprolactone) Scaffolds Interactions
    (Soc Bioscience Bioengineering Japan, 2016) Ozkan, Ozan; Sasmazel, Hilal Turkoglu
    In the study presented here, in order to improve the surface functionality and topography of poly (epsilon-caprolactone) (PCL)/chitosan/PCL hybrid tissue scaffolds fabricated layer by layer with electrospinning technique, an atmospheric pressure nozzle type plasma surface modification was utilized. The optimization of the plasma process parameters was carried out by monitoring the changes in surface hydrophilicity by using contact angle measurements. SEM, AFM and XPS analyses were utilized to observe the changes in topographical and chemical properties of the modified surfaces. The results showed that applied plasma modification altered the nanotopography and the functionality of the surfaces of the scaffolds. The modification applied for 9 min from a distance of 17 cm was found to provide the possible contact angle value (75.163 +/- 0.083) closest to the target value which is the value of tissue culture polystyrene (TCPS) petri dishes (similar to 49.7 degrees), compared to the unmodified samples (84.46 +/- 3.86). In vitro cell culture was carried out by L929 mouse fibroblast cell line in order to examine the effects of plasma surface modification on cell material interactions. Standard MIT assay showed improved cell viability on/within modified scaffolds confirmed with the observations of the cell attachment and the morphology by means of SEM, fluorescence and confocal imaging. The experiments performed in the study proved the enhanced biocompatibility of the nozzle type dry air plasma modified scaffolds. (C) 2016, The Society for Biotechnology, Japan. All rights reserved.
  • Article
    Development of Electrospun We43 Magnesium Alloy-Like Compound
    (Amer Scientific Publishers, 2020) Ozkan, Ozan; Sasmazel, Hilal Turkoglu; Biskin, Erhan
    Metallic structures are conventionally fabricated with high temperature/deformation processes resulting the smallest possible microscopic structures in the order of several hundreds of micrometer. Therefore, to obtain structures with fibers smaller than 100 Am, those are unsuitable. In this study, electrospinning, a fiber fabrication technique commonly used for polymers, was adopted to fabricate a WE43 magnesium alloy-like fibrous structure. The aim is to adopt metallic WE43 alloy to regenerative medicine using tissue engineering approach by mimicking its composition inside of a fibrous structure. The solution required for electrospinning was obtained with water soluble nitrates of elements in WE43 alloy, and PVP or PVA were added to obtain a spinnable viscosity which was pyrolised away during heat treatment. Electrospinning parameters were optimized with naked-eye observations and SEM as 1.5 g salts and 5 wt.% PVA containing solution prepared at 90 degrees C and electrospun under 30 kV from a distance of 12-15 cm with a feeding rate of 5 mu l/min. Then the samples were subjected to a multi-step heat treatment under argon to remove the polymer and calcinate the nitrates into oxides which was designed based on thermal analyses and reaction kinetics calculations as 6 h at 230 degrees C, 8.5 h at 390 degrees C, 5 h at 465 degrees C, 80 h at 500 degrees C and 10 h at 505 degrees C, consecutively. The characterizations conducted in terms of structure, composition and crystallinity with XRD, XPS, EDX and SEM showed that it is possible to obtain MgaYbNdcZrdOx), (empirical) fibers with the same composition as WE43 in sub-millimeter sizes using this approach.
  • Article
    Citation - WoS: 39
    Citation - Scopus: 44
    A Novel Treatment Strategy for Preterm Birth: Intra-Vaginal Progesterone-Loaded Fibrous Patches
    (Elsevier, 2020) Cam, Muhammet Emin; Hazar-Yavuz, Ayse Nur; Cesur, Sumeyye; Ozkan, Ozan; Alenezi, Hussain; Sasmazel, Hilal Turkoglu; Edirisinghe, Mohan
    Progesterone-loaded poly(lactic) acid fibrous polymeric patches were produced using electrospinning and pressurized gyration for infra-vaginal application to prevent preterm birth. The patches were intravaginally inserted into rats in the final week of their pregnancy, equivalent to the third trimester of human pregnancy. Maintenance tocolysis with progesterone-loaded patches was elucidated by recording the contractile response of uterine smooth muscle to noradrenaline in pregnant rats. Both progesterone-loaded patches indicated similar results from release and thermal studies, however, patches obtained by electrospinning had smaller average diameters and more uniform dispersion compared to pressurized gyration. Patches obtained by pressurized gyration had better results in production yield and tensile strength than electrospinning; thereby pressurized gyration is better suited for scaled-up production. The patches did not affect cell attachment, viability, and proliferation on Vero cells negatively. Consequently, progesterone-loaded patches are a novel and successful treatment strategy for preventing preterm birth.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 14
    Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization
    (Mdpi, 2021) Alazzawi, Marwa; Alsahib, Nabeel Kadim Abid; Sasmazel, Hilal Turkoglu
    Glycine (Gly), which is the simplest amino acid, induces the inflammation response and enhances bone mass density, and particularly its beta polymorph has superior mechanical and piezoelectric properties. Therefore, electrospinning of Gly with any polymer, including polyvinyl alcohol (PVA), has a great potential in biomedical applications, such as guided bone regeneration (GBR) application. However, their application is limited due to a fast degradation rate and undesirable mechanical and physical properties. Therefore, encapsulation of Gly and PVA fiber within a poly(epsilon-caprolactone) (PCL) shell provides a slower degradation rate and improves the mechanical, chemical, and physical properties. A membrane intended for GBR application is a barrier membrane used to guide alveolar bone regeneration by preventing fast-proliferating cells from growing into the bone defect site. In the present work, a core/shell nanofibrous membrane, composed of PCL as shell and PVA:Gly as core, was developed utilizing the coaxial electrospinning technique and characterized morphologically, mechanically, physically, chemically, and thermally. Moreover, the characterization results of the core/shell membrane were compared to monolithic electrospun PCL, PVA, and PVA:Gly fibrous membranes. The results showed that the core-shell membrane appears to be a good candidate for GBR application with a nano-scale fiber of 412 +/- 82 nm and microscale pore size of 6.803 +/- 0.035 mu m. Moreover, the wettability of 47.4 +/- 2.2 degrees contact angle (C.A) and mechanical properties of 135 +/- 3.05 MPa average modulus of elasticity, 4.57 +/- 0.04 MPa average ultimate tensile stress (UTS), and 39.43% +/- 0.58% average elongation at break are desirable and suitable for GBR application. Furthermore, the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results exhibited the formation of beta-Gly.
  • Article
    Design and Fabrication of Dual-Layered PCL/PEG Theranostic Platforms Using 3D Melt Electrowriting for Targeted Delivery and Post-Treatment Monitoring
    (Springer, 2025) Ege, Zeynep Ruya; Enguven, Gozde; Ege, Hasan; Durukan, Barkan Kagan; Sasmazel, Hilal Turkoglu; Gunduz, Oguzhan
    Advanced pancreatic tumors remain highly resistant to treatment due to their dense stromal environment and poor vascularization, which limit drug penetration and efficacy. Even after surgical resection, the high recurrence rate frequently leads to poor prognosis and mortality. To address these challenges, we developed solvent-free three-dimensional (3D) melt electrowritten (MEW) theranostic microfiber patches composed of poly(epsilon-caprolactone) (PCL) and polyethylene glycol (PEG). The patches were designed as dual-layered, 10-layer structures, with gemcitabine (GEM) loaded in the bottom five layers for localized chemotherapy to suppress tumor recurrence, and indocyanine green (ICG) incorporated in the top five layers to enable fluorescence-based post-surgical monitoring. Following fabrication, the patches were characterized both materially and in vitro, with GEM loaded at 100, 250, or 500 mu g/ml. PEG incorporation improved patch flexibility, facilitating the implantation process. In vitro release analysis demonstrated an initial burst followed by sustained, pH-responsive GEM release (similar to 70% at pH 4.0 and similar to 30% at pH 7.4 for 500 mu g/mL GEM at 168 h), while ICG release reached similar to 25% (pH 7.4) and similar to 10% (pH 4.0). GEM-loaded patches significantly reduced Capan-1 cell viability in a dose- and time-dependent manner, achieving >= 50% reduction at 72 h with 500 mu g/mL. Importantly, ICG incorporation did not impair GEM cytotoxicity; confocal imaging confirmed ICG internalization in viable cells and showed a decline in ICG-positive cells with increasing GEM dose, supporting the potential for concurrent therapy and monitoring. Thus, the theranostic patches enable localized, pH-responsive GEM delivery with integrated ICG-based fluorescence imaging, achieving significant cytotoxicity against pancreatic cancer cells while providing a platform for post-surgical surveillance. This solvent-free, layer-addressable approach represents a promising strategy for personalized, locally implantable theranostic systems in pancreatic cancer treatment.