2 results
Search Results
Now showing 1 - 2 of 2
Conference Object Citation - WoS: 8Citation - Scopus: 7UTILIZATION OF REACTOR GRADE PLUTONIUM AS ENERGY MULTIPLIER IN THE LIFE ENGINE(Amer Nuclear Soc, 2012) Sahin, Sumer; Sahin, Haci Mehmet; Acir, AdemThe accumulated reactor grade (RG)-plutonium as nuclear waste of conventional reactors is estimated to exceed 1700 tonnes. Laser Inertial Confinement Fusion Fission Energy (LIFE) engine is considered to incinerate RG-plutonium in stockpiles. Calculations have been conducted for a constant fusion driver power of 500 MWth in S-8-P-3 approximation using 238-neutron groups. RG-plutonium out of the nuclear waste of LWRs is used in form of fissile carbide fuel in TRISO particles with volume fractions of 2, 3, 4, 5 and 6 %, homogenously dispersed in the Flibe coolant. Respective tritium breeding ratio (TBR) values per incident fits ion neutron are calculated as TBR = 1.35, 1.52, 1.73, 2.02 and 2.47 at start-up. With the burn up of fissionable RG-Pu isotopes in the coolant, TBR decreases gradually. Similarly, blanket energy multiplications are calculated as M-0 = 3.8, 5.5, 7.7, 10.8 and 15.4 at start-up, respectively. Calculations have indicated prospects of achievability of very high burn up values (> 400 000 MD.D/MT).Conference Object Citation - WoS: 5Citation - Scopus: 5REDUCTION OF WEAPON GRADE PLUTONIUM INVENTORIES IN A THORIUM BURNER(Amer Nuclear Soc, 2012) Sahin, Sumer; Sahin, Haci Mehmet; Acir, AdemLarge quantities of weapon grade (WG) plutonium have been accumulated in the nuclear warheads. Plutonium and heavy water moderator can give a good combination with respect to neutron economy. TRISO type fuel can withstand very high fuel burn up levels. The paper investigates the prospects of utilization of TRISO fuel made of WG-plutonium in CANDU reactors. Three different fuel compositions have been investigated: (1): 90 % ThC + 10 % PuC, (2): 70 % ThC + 30 % PziC and (3): 50 ThC + 50 % PuC. The temporal variation of the criticality k(infinity) and the burn-up values of the reactor have been calculated by full power operation up to 17 years. Calculated startup criticalities for these fuel modes are k(infinity),(0) = 1.6403, 1.7228, 1.7662, respectively. Attainable burn up values and reactor operation times with the same fuel charge will be 94 700, 265 000, 425 000 MW.D/MT and similar to 3.5, 10, 17 years, respectively. These high burn ups would reduce fuel fabrication costs and nuclear waste mass for final disposal per unit energy drastically.

