Search Results

Now showing 1 - 6 of 6
  • Article
    Citation - WoS: 42
    Citation - Scopus: 41
    Synthesis and Characterization of Mg2b2<
    (Pergamon-elsevier Science Ltd, 2005) Qasrawi, AF; Kayed, TS; Mergen, A; Gürü, M
    Magnesium borate of the form Mg2B2O5 has been prepared and its structural and thermal properties were studied using X-ray diffraction and differential thermal analysis. An investigation of the electrical and optical properties of Mg2B2O5 system has been carried out. The electrical resistivity of the sample was measured in the temperature range of 170-400 K. The data analysis revealed an extrinsic nature of the conductivity with two impurity levels located at 0.13 and 0.71 eV in the temperature ranges of 170-230 K and 240-400 K, respectively. The optical transmission and reflection was recorded at 300 K in the incident photon energy range of 3.0-6.0 eV. The absorption coefficient data analysis revealed an indirect optical energy band gap of 4.73 eV. In addition, two impurity levels located at 3.43, and 4.49 eV were observed in the absorption spectra. (c) 2005 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 16
    Citation - Scopus: 17
    Investigation of Localized Levels in Gas0.5se0.5< Layered Crystals by Means of Electrical, Space-Charge Limited Current and Photoconductivity Measurements
    (Wiley-v C H verlag Gmbh, 2002) Qasrawi, AF; Gasanly, NM
    To identify the localized levels in GaS0.5Se0.5 single crystals, the dark electrical conductivity, current-voltage characteristics and photoconductivity measurements were carried out in the temperature range of 250-400 K. Temperature dependence of dark electrical conductivity and the space-charge limited current studies indicate the presence of a single discrete trapping level located at 0.31 eV below the conduction band with a density of about 1.3 x 10(15) cm(-3). The conductivity data above 320 K reveal an additional donor level with activation energy of 0.40 eV indicating the extrinsic nature of conduction. The spectral distribution of photocurrent in the photon energy range of 0.65-5.9 eV reveals an indirect band gap of 2.26 eV. The photocurrent-illumination intensity dependence follows the law I-ph proportional to F-gamma, with gamma being 1.0, 0.65, and 0.5 at low, moderate and high illumination intensities, respectively. The corresponding behavior indicates the domination of monomolecular recombination, near equal densities of trapped and recombination centers and bimolecular recombination. It is observed that the photocurrent increases in the temperature range from 250 K up to T-m = 360 K and decreases for T > T-m. The temperature dependence of the photocurrent reveals two additional impurity levels with activation energies of 0.14 and 0.10 eV below and above Tm, respectively.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 13
    Light Illumination Effect on the Electrical and Photovoltaic Properties of In6s7< Crystals
    (Iop Publishing Ltd, 2006) Qasrawi, AF; Gasanly, NM
    The electrical and photoelectrical properties of In6S7 crystals have been investigated in the temperature regions of 170-300 K and 150-300 K, respectively. The dark electrical analysis revealed the intrinsic type of conduction. The energy band gap obtained from the temperature-dependent dark current is found to be 0.75 eV. It is observed that the photocurrent increases in the temperature range of 150 K up to T-m = 230 K and decreases at T > T-m. Two photoconductivity activation energies of 0.21 and 0.10 eV were determined for the temperature ranges below and above Tm, respectively. The photocurrent (I-ph)-illumination intensity (F) dependence follows the law I-ph alpha F-gamma. The value of. decreases when the temperature is raised to T-m, then it starts increasing. The change in the value. with temperature is attributed to the exchange in role between the recombination and trapping centres in the crystal. The crystals are found to exhibit photovoltaic properties. The photovoltage is recorded as a function of illumination intensity at room temperature. The maximum open-circuit voltage and short-circuit photocurrent density, which are related to an illumination intensity equivalent to one sun, are 0.12 V and 0.38 mA cm(-2), respectively.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 18
    Growth, Electrical and Structural Characterization of Β-Gase Thin Films
    (Springer, 2003) Parlak, M; Qasrawi, AF; Erçelebi, Ç
    GaSe thin films were deposited onto the glass substrates kept at 200degrees and 300degreesC by the thermal evaporation of GaSe crystals under the pressure of 10(-5) Torr. X-ray analysis of the films revealed that films grown at 200. C are amorphous in nature while the films grown at 300degreesC are polycrystalline beta-GaSe. The temperature dependent electrical conductivity measurements in the region of 320-100 K for the films grown at 300degreesC showed that the transport mechanisms are the thermionic emission of charged carriers and the variable range hopping above and below 180 K, respectively. Space charge limited current (SCLC) studies have also been performed on these films through the current-voltage measurements at different temperatures and a dominant hole trap at 0.233 eV from the top of the valance band with a trap density of similar to1.6 x 10(11) cm(-3) is identified. (C) 2003 Kluwer Academic Publishers.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 30
    Optoelectronic and Electrical Properties of Tlgas2 Single Crystal
    (Wiley-v C H verlag Gmbh, 2005) Qasrawi, AF; Gasanly, NM
    The optoelectronic and electrical properties of TIGaS2 single crystals have been investigated by means of room temperature transmittance and reflectance spectral analysis, Hall coefficient, dark electrical resistivity and photocurrent measurements in the temperature range of 200-350 K. The optical data have revealed an indirect and direct allowed transition band gaps of 2.45 and 2.51 eV, an oscillator and dispersion energy of 5.04 and 26.45 eV, respectively, a static dielectric constant of 6.25 and static refractive index of 2.50. The dark Hall coefficient measurements have shown that the crystals exhibit a conductivity type conversion from p-type to n-type at a critical temperature of 315 K. Deep donor and acceptor energy levels of 0.37/0.36 eV and 0.66 eV has been calculated from the temperature dependence of Hall coefficient and resistivity, and photocurrent measurements, respectively. The photocurrent decreases with decreasing temperature. The analysis of the photocurrent data have revealed that, the recombination mechanism is linear and supralinear above and below 290 K, respectively. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Conference Object
    Citation - WoS: 10
    Production of Anorthite From Kaolinite and Caco3 Via Colemanite
    (Trans Tech Publications Ltd, 2004) Mergen, A; Kayed, TS; Bilen, M; Qasrawi, AF; Gürü, M
    Boron oxide has been found to be useful flux for the preparation of dense anorthite ceramics (CaO.Al2O3.2SiO(2)). Inexpensive starting materials of kaolinite, calcium carbonate and silica were used for anorthite ceramic production. Colemanite (2CaO.3B(2)O(3).5H(2)O) was added into the mixtures and the effects of colemanite upon the transformation towards anorthite and on the densification were investigated between 900-1400 degreesC. Single phase anorthite ceramic formed at lower temperatures in boron containing mixtures. Boron containing powder compacts were sintered above 90% theoretical density at 1350 degreesC.