165 results
Search Results
Now showing 1 - 10 of 165
Article Citation - WoS: 5Citation - Scopus: 6Photoelectronic and Electrical Properties of Tl2ingas4< Layered Crystals(Pergamon-elsevier Science Ltd, 2007) Qasrawi, A. F.; Gasanly, N. M.Tl2InGaS4 layered crystals are studied through the dark electrical conductivity, space charge limited current and illumination- and temperature-dependent photoconductivity measurements in the temperature regions of 220-350 K, 300-400 K and 200-350 K, respectively. The space charge limited current measurements revealed the existence of a single discrete trapping level located at 0.44 eV. The dark electrical conductivity showed the existence of two energy levels of 0.32 eV and 0.60 eV being dominant above and below 300 K, respectively. The photoconductivity measurements reflected the existence of two other energy levels located at 0.28 eV and 0.19 eV at high and low temperatures, respectively. The photocurrent is observed to increase with increasing temperature up to a maximum temperature of 330 K. The illumination dependence of photoconductivity is found to exhibit supralinear recombination in all the studied temperature ranges. The change in recombination mechanism is attributed to exchange in the behavior of sensitizing and recombination centers. (C) 2006 Elsevier Ltd. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 4Effects of Ge Substrate on the Structural and Optical Conductivity Parameters of Bi2o3< Thin Films(Elsevier Gmbh, 2019) Alharbi, S. R.; Qasrawi, A. F.In this article the structural, optical and dielectric properties of a 200 nm thick Bi2O3 thin films which are deposited onto amorphous germanium substrate are reported. Both of the Ge and Bi2O3 thin films are prepared by the thermal evaporation technique under vacuum pressure of 10 s mbar. Bi2O3 thin films are found to prefer the monoclinic nature of structure with larger values of microstrain, dislocation density, stacking faults and smaller grain sizes upon replacement of the glass substrate by germanium. Optically, significant redshift in the energy band gap is observed when the films are grown onto Ge. The Ge/Bi2O3 heterojunctions exhibit a conduction and valence band offsets of value of 0.81 and 1.38 eV, respectively. In addition to the enhancement in the dielectric constant near the IR region, the Drude-Lorentz modeling of the Ge/Bi2O3 heterojunctions has shown remarkable effect of the Ge substrate on the optical conductivity parameters of Bi2O3. Particularly, the drift mobility increased by about one order of magnitude, the free hole density decreased by (similar to)24 times and the plasmon frequency ranges extended from 5.21 to 11.0 GHz to 2.59-12.80 GHz when germanium substrate is used. The optical features of the heterojunction nominate it for visible light communication technology.Article Citation - WoS: 11Citation - Scopus: 12Structural, optical, electrical and dielectric properties of Bi1.5Zn0.92Nb1.5-xNixO6.92-3x/2 solid solution(Taylor & Francis Ltd, 2012) Qasrawi, A. F.; Nazzal, E. M.; Mergen, A.The effects of Ni content on the structural, optical, dielectric and electrical properties of Bi1.5Zn0.92Nb1.5O6.92 pyrochlore ceramics have been investigated. Nickel atoms were inserted into pure samples in accordance to the composition Bi1.5Zn0.92Nb1.5-xNixO6.92-3x/2, with x varying from 0.07 to 0.40. The structural analysis revealed that a single phase of the pyrochlore compound can be obtained for x values of 0.07 and 0.10 only. Further increase in Ni caused the appearance of multiple phases. The optical energy band gaps are determined as 3.30, 3.35 and 3.52 eV for Ni content of 0.00, 0.07 and 0.10 respectively. The temperature dependent electrical resistivity and the frequency dependent capacitance are observed to increase with increasing Ni content. The resonance frequency, which was determined from the capacitance-frequency dependence, was observed to shift from 12.14 to 10.47 kHz as the x values increase from 0.00 to 0.10 respectively.Article Citation - WoS: 7Citation - Scopus: 6Temperature-Dependent Structural Transition, Electronic Properties and Impedance Spectroscopy Analysis of Tl2ingas4< Crystals Grown by the Bridgman Method(Elsevier Sci Ltd, 2018) Qasrawi, A. F.; Alkarem, Qotaibah A.; Gasanly, N. M.In this work, we report the temporary structural modifications associated with the in situ heating of the Tl2InGaS4 crystals in the temperature range of 300-420 K. The analysis of the X-ray diffraction patterns revealed the temperature-independent possible phase transformations between the monoclinic and triclinic phases. The temperature analysis of the lattice parameters, crystallite size, strain, dislocation density and stacking faults has shown a temporary enhancement in the crystallinity of this compound above 375 K. Significant increase in the grain size accompanied to decrease in the strain, defect density and stacking faults was observed above this temperature. The scanning electron microscopy imaging has shown that the crystals are layer structured with high quality layers of thicknesses of similar to 12 nm. In addition the energy dispersive X-ray analysis has shown that the crystal comprise no detectable impurity. Moreover, the room temperature optical characterizations has shown that the Tl2InGaS4 exhibit an energy band gap of 2.5 eV. The temperature dependent electrical resistivity measurements indicated highly resistive crystal with activation energy values of 0.84 and 0.19 eV above and below 375 K, respectively. On the other hand, room temperature impedance spectroscopy analysis in the frequency domain of 10-1800 MHz has shown that the crystal exhibits negative resistance and negative capacitance effects below and above 1580 MHz. The crystals are observed also to behave as band stop filter with notch frequency of 1711 MHz.Article Citation - WoS: 9Citation - Scopus: 9Design and Characterization of Au/In4< Field Effect Transistors(Elsevier Science Bv, 2018) Khusayfan, Najla M.; Qasrawi, A. F.; Khanfar, Hazem K.In the current work, the structural and electrical properties of the In4Se3/Ga2S3 interfaces are investigated. The X-ray analysis which concern the structural evolutions that is associated with the substrate type has shown that the hexagonal kappa-In2Se3 and the selenium (rhombohedral) rich orthorhombic In4Se3 phases of InSe are grown onto glass and gold substrates, respectively, at substrate of temperature of 300 degrees C in a vacuum media. The coating of the kappa-In2Se3 and of In4Se3 with amorphous layer of Ga2S3 is accompanied with uniform strain. The In4Se3/Ga2S3 interface is found to be of attractive quantum confinement features as it exhibited a conduction and valence band offsets of 0.20 and 1.86 eV, respectively. When the Au/In4Se3/Ga2S3 interface was contacted with carbon metallic point contact, it reveals a back to back Schottky hybrid device that behaves typically as metal-oxidesemiconductor field effect transition (MOSFET). The depletion capacitance analysis of this device revealed built in voltage values of 1.91 and 1.64 V at the Au and C sides, respectively. The designed MOSFET which is characterized in the frequency domain of 0.01-1.80 GHz is observed to exhibit, resonance-anti-resonance phenomena associated with negative capacitance effect in a wide domain of frequency that nominate it for applications in electronic circuits as parasitic capacitance minimizer, bus switching speed enhancer and low pass/high pass filter at microwave frequencies. (C) 2018 The Authors. Published by Elsevier B.V.Article Citation - WoS: 4Citation - Scopus: 4Mixed Conduction and Anisotropic Single Oscillator Parameters in Low Dimensional Tlinse2 Crystals(Elsevier Science Sa, 2013) Qasrawi, A. F.; Gasanly, N. M.Due to the importance of the TlInSe2 crystal as neutron and gamma-ray detectors, its electrical and dispersive optical parameters have been investigated. Particularly, the anisotropic current conduction mechanism in the temperature region of 100-350 K and the room temperature anisotropic dispersive optical properties were studied by means of electrical conductivity and optical reflectance, respectively. It has been shown that the mixed conduction is the most dominant transport mechanism in the TlInSe2 crystals. Particularly, when the electric field is applied perpendicular to the crystal's c-axis, the main dominant current transport mechanism is due to the mixed conduction and the variable range hopping above and below 160 K, respectively. When the electric field is applied parallel to the crystal's c-axis, the electrical conductivity is dominated by the thermionic emission, mixed conduction and variable range hopping at high, moderate and low temperatures, respectively. The optical reflectivity analysis in the wavelength range 210-1500 nm revealed a clear anisotropy effect on the dispersive optical parameters. Particularly, the static refractive index, static dielectric constant, dispersion energy and oscillator energy exhibited values of 2.50, 6.24, 20.72 eV and 3.96 eV, and values of 3.05, 9.33, 39.27 eV and 4.72 eV for light propagation parallel and perpendicular to the crystal's c-axis, respectively. Moreover, the frequency dependence of the dielectric constant, epsilon(omega), reflected strong dielectric anisotropy that exhibit maximum epsilon(omega) value of 38.80 and 11.40 at frequencies of 11.07 x 10(14) Hz for light propagation parallel and perpendicular to the crystal's c-axis, respectively. The anisotropy in the epsilon(omega) makes the TlInSe2 crystals attractive to be used as nonvolatile static memory devices. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - Scopus: 1Samarium and Yttrium Doping Induced Phase Transitions and Their Effects on the Structural, Optical and Electrical Properties of Nd2sn2< Ceramics(Iop Publishing Ltd, 2019) Saleh, Adli A.; Qasrawi, A. F.; Hamamera, Hanan Z.; Khanfar, Hazem K.; Yumusak, G.In this work, the effects of Sm+3 and Y+3 doping onto the structural, optical and electrical properties of Nd2Sn2O7 are investigated. An atomic content of 3.49% and 4.29% of Sm and Y, respectively, were sufficient to alter the physical properties of the Nd2Sn2O7. Particularly, the Y+3 ionic substitution decreased the lattice constant, narrows the energy band gap, changed the conductivity type from n- to p- type and increased the electrical conductivity by 73 times without changing the cubic nature of structure of the pyrochlore ceramics. On the other hand, Sm+3 ionic substitutions changed the cubic structure to hexagonal or trigonal and forced optical transitions in the infrared range of light. The energy band gap shrunk from 3.40 to 1.40 eV, the defect density is reduced and the electrical conductivity increased by 47 times via Sm doping. These doping agents' makes the neodymium stannate pyrochlore ceramics more appropriates for optoelectronic applications.Article Citation - WoS: 22Citation - Scopus: 22Optical Properties of Tlins2 Layered Single Crystals Near the Absorption Edge(Springer, 2006) Qasrawi, A. F.; Gasanly, N. M.The sample thickness effect on the optical properties of TlInS2 layered crystals has been investigated at room temperature. The absorption coefficient of the samples calculated from the experimental transmittance and reflectance in the photon energy range of 1.10-3.10 eV has two absorption regions. The first is a long-wavelength region of 1.16-1.28 eV. The second region lies above 2.21 eV with a thickness-dependent indirect band gap. The energy gap decreases from 2.333 to 2.255 eV as the sample thickness increases from 27 to 66 mu m. The differential spectra of absorption coefficient demonstrates the existence of a thickness-dependent impurity level being lowered from 2.360 to 2.307 eV as sample thickness increases from 27 to 66 mu m. (c) 2006 Springer Science + Business Media, Inc.Article Citation - WoS: 7Citation - Scopus: 7Physical Design and Dynamical Analysis of Resonant-Antiresonant Ag/MgO/GaSe/Al Optoelectronic Microwave Devices(Springer, 2015) Kmail, Renal R. N.; Qasrawi, A. F.In this work, the design and optical and electrical properties of MgO/GaSe heterojunction devices are reported and discussed. The device was designed using 0.4-mu m-thick n-type GaSe as substrate for a 1.6-mu m-thick p-type MgO optoelectronic window. The device was characterized by means of ultraviolet-visible optical spectrophotometry in the wavelength region from 200 nm to 1100 nm, current-voltage (I-V) characteristics, impedance spectroscopy in the range from 1.0 MHz to 1.8 GHz, and microwave amplitude spectroscopy in the frequency range from 1.0 MHz to 3.0 GHz. Optical analysis of the MgO/GaSe heterojunction revealed enhanced absorbing ability of the GaSe below 2.90 eV with an energy bandgap shift from 2.10 eV for the GaSe substrate to 1.90 eV for the heterojunction design. On the other hand, analysis of I-V characteristics revealed a tunneling-type device conducting current by electric field-assisted tunneling of charged particles through a barrier with height of 0.81 eV and depletion region width of 670 nm and 116 nm when forward and reverse biased, respectively. Very interesting features of the device are observed when subjected to alternating current (ac) signal analysis. In particular, the device exhibited resonance-antiresonance behavior and negative capacitance characteristics near 1.0 GHz. The device quality factor was similar to 10(2). In addition, when a small ac signal of Bluetooth amplitude (0.0 dBm) was imposed between the device terminals, the power spectra of the device displayed tunable band-stop filter characteristics with maximum notch frequency of 1.6 GHz. The energy bandgap discontinuity, the resonance-antiresonance behavior, the negative capacitance features, and the tunability of the electromagnetic power spectra at microwave frequencies nominate the Ag/MgO/GaSe/Al device as a promising optoelectronic device for use in multipurpose operations at microwave frequencies.Article Citation - WoS: 1Citation - Scopus: 1Photovoltaic Effect and Space Charge Limited Current Analysis in Tlgate2 Crystals(Polish Acad Sciences inst Physics, 2012) Qasrawi, A. F.; Yaseen, T. R.; Eghbariy, B.; Gasanly, N. M.Anisotropic space charge limited current density analysis and photovoltaic effect in TlGaTe2 single crystals has been investigated. It is shown that, above 330 K, the crystal exhibits intrinsic and extrinsic type of conductivity along (c-axis) and perpendicular (a-axis) to the crystal's axis, respectively. The current density (J) is found to be space charge limited. It is proportional to the square and three halves power of voltage (V) along the a- and c-axis, respectively. Along the a-axis and at sufficiently low electric field values, the activation energy of the current density is found to depend on the one half power of electric field. At high electric fields, the activation energy is field invariant. This behavior is found to be due to the Pool Frenkel effect and due to a trap set located at 0.26 eV, respectively. Along the c-axis the crystal is observed to operate under the Child Langmuir space charge limited regime. TlGaTe2 crystals are found to exhibit photovoltaic properties. The open circuit photovoltage is recorded as a function of illumination intensity at room temperature.

