2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 2Citation - Scopus: 2Use of Colemanite in Ferronickel Smelting(Technical Faculty, Bor-serbia, 2019) Keskinkilic, E.; Pournaderi, S.; Geveci, A.; Topkaya, Y. A.Use of colemanite in metal-slag systems aims primarily to decrease the viscosity of slag and, therefore, achieve better metal-slag separation. Enhanced metal-slag separation is helpful to decrease the number of suspended metal/alloy droplets in slag, i.e. the physical losses. In the literature, successful use of colemanite was reported both in steelmaking and copper matte smelting processes. Ferronickel smelting slags contain nickel in the range of 0.1-0.2% and correspondingly, metal-slag distribution ratio values of nickel are reported even above 200. On the contrary, nickel recoveries are hard to exceed 95%. This can be mostly attributed to the physical losses of nickel due to very high slag volume in ferronickel smelters; for 1 ton of ferronickel, 10-15 tonnes of slag are generated regardless of the type of the laterite, which contains significant quantity of ,gangue components. The authors thought that use of colemanite could be a solution to decrease physical losses. Therefore, the use of colemanite in ferronickel smelting was investigated in the present work. Laboratory-scale smelting experiments were conducted using calcined and prereduced laterites in a vertical tube furnace under different gas atmospheres. The amount of colemanite added was in the range of 0 - 2.5% of the total charge. The experiments were also performed using ferronickel and slag samples obtained from a ferronickel smelter.Article Citation - WoS: 1Citation - Scopus: 2Laboratory-Scale Smelting of Limonitic Laterite Ore From Central Anatolia(Southern African inst Mining Metallurgy, 2017) Pournaderi, S.; Keskinkilic, E.; Geveci, A.; Topkaya, Y. A.The feasibility of ferronickel production from a low-grade limonitic laterite ore was investigated. The ore was first calcined and then prereduced in the solid state. The reduced ore was then smelted to produce ferronickel. The effects of coal addition, smelting temperature, and retention time on the process were investigated. Chemical and physical losses in the slag were separately quantified. Coal addition was the main parameter that controlled the ferronickel grade and losses in the slag. The melting point of the slag was well below that of the ferronickel, which enhanced metal-slag separation and minimized physical losses in the slag. A microstructural study of an industrial slag revealed that Cr-rich particulates, which were suspended in the slag, were mainly responsible for the physical losses in the slag.

