2 results
Search Results
Now showing 1 - 2 of 2
Review Citation - WoS: 2Citation - Scopus: 5Machine Learning for Sustainable Reutilization of Waste Materials as Energy Sources - a Comprehensive Review(Taylor & Francis inc, 2024) Peng, Wei; Sadaghiani, Omid KarimiThis work reviews Machine Learning applications in the sustainable utilization of waste materials as energy source so that analysis of the past works exposed the lack of reviewing study. To solve it, the origin of waste biomass raw materials is explained, and the application of Machine Learning in this section is scrutinized. After analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in waste biomass production areas to enhance the quality and quantity of production, improve the predictions, diminish the losses, as well as increase storage and transformation conditions. The positive effects and application with the utilized algorithms and other effective information are collected in this work for the first time. According to the statistical analysis, in 20% out of the studies conducted about the application of Machine Learning and Deep Learning in waste biomass raw materials, Artificial Neural Network (ANN) algorithm has been applied. Afterward, the Super Vector Machine (SVM) and Random Forest (RF) are the second and third most-utilized algorithms applied in 15% and 14% of studies. Meanwhile, 27% of studies focused on the applications of Machine Learning and Deep Learning in the Forest wastes.Review Citation - WoS: 8Citation - Scopus: 11A Review on the Applications of Machine Learning and Deep Learning in Agriculture Section for the Production of Crop Biomass Raw Materials(Taylor & Francis inc, 2023) Peng, Wei; Karimi Sadaghiani, OmidThe application of biomass, as an energy resource, depends on four main steps of production, pre-treatment, bio-refinery, and upgrading. This work reviews Machine Learning applications in the biomass production step with focusing on agriculture crops. By investigating numerous related works, it is concluded that there is a considerable reviewing gap in collecting the applications of Machine Learning in crop biomass production. To fill this gap by the current work, the origin of biomass raw materials is explained, and the application of Machine Learning in this section is scrutinized. Then, the kinds and resources of biomass as well as the role of machine learning in these fields are reviewed. Meanwhile, the sustainable production of farming-origin biomass and the effective factors in this issue are explained, and the application of Machine Learning in these areas are surveyed. Summarily, after analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in crop biomass production areas to enhance the crops production quantity, quality, and sustainability, improve the predictions, decrease the costs, and diminish the products losses. According to the statistical analysis, in 19% of the studies conducted about the application of Machine Learning and Deep Learning in crop biomass raw materials, Artificial Neural Network (ANN) algorithm has been applied. Afterward, the Random Forest (RF) and Super Vector Machine (SVM) are the second and third most-utilized algorithms applied in 17% and 15% of studies, respectively. Meanwhile, 26% of studies focused on the applications of Machine Learning and Deep Learning in the sugar crops. At the second and third places, the starchy crops and algae with 23% and 21% received more attention of researchers in the utilization of Machine Learning and Deep Learning techniques.

