Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 44
    Citation - Scopus: 43
    Silver-Loaded Tio2 Powders Prepared Through Mechanical Ball Milling
    (Elsevier Sci Ltd, 2013) Aysin, Basak; Ozturk, Abdullah; Park, Jongee
    Silver (Ag) was loaded on TiO2 powders through mechanical ball milling. Ag-loading was accomplished by adding 4.6, 9.2, and 13.8 ml of AgNO3 solution to the TiO2 powders during the milling process. The resulting powder was characterized by XRD, XPS, SEM, and EDS. The photocatalytic activity of the silver-loaded powder was evaluated in terms of the degradation of methyl orange (MO) solution under ultraviolet (UV) illumination. XRD patterns were refined using the Rietveld analysis to determine the lattice parameters. XRD analysis suggested that Ag was loaded on TiO2 powders in the form of AgO. X-ray photoelectron spectroscopy and Rietveld analysis revealed that silver did not dope into the crystal structure of TiO2. SEM investigations confirmed that ball milling caused a decrease in the average particle size of the powders. Silver-loading improved the photocatalytic activity of the TiO2 powders. The TiO2 powder ball milled without Ag-loading degraded 46% of the MO solution whereas the ball milled with 13.8 ml AgNO3 solution degraded 96% of the MO solution under 1 h UV irradiation. Moreover, TiO2 powders gained antibacterial property after Ag-loading. (c) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 33
    Boron and zirconium co-doped TiO2 powders prepared through mechanical ball milling
    (Elsevier Sci Ltd, 2013) Tokmakci, Tolga; Ozturk, Abdullah; Park, Jongee
    A titania photocatalyst co-doped with boron and zirconium was prepared by mechanical ball milling. The resulting powder was characterized by XRD, XPS, SEM, and EDS. The photocatalytic performance of the powder was evaluated by degradation of methylene blue (MB) solution under UV illumination. XRD patterns were refined by Rietveld analysis to obtain accurate lattice parameters and positions of the atoms in the crystal structure of the photocatalyst. XRD, XPS, and Rietveld analysis results indicated that mechanical ball milling successfully weaved the dopant elements into the crystal structure and distorted the lattice of TiO2. Also, SEM micrographs confirmed that mechanical ball milling led to a decrease in average particle size of the photocatalyst. Boron and zirconium co-doped TiO2 particles exhibited a better visible light response and photocatalytic activity than those of the mono-element doped TiO2 (i.e. B-TiO2 and Zr-TiO2) and undoped TiO2 particles. The enhanced photocatalytic activity is attributed to the synergistic effects of boron zirconium co-doping and particle size reduction. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.