Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 39
    Citation - Scopus: 37
    MoS2-nanosheet/graphene-oxide composite hole injection layer in organic light-emitting diodes
    (Korean inst Metals Materials, 2017) Park, Minjoon; Thang Phan Nguyen; Choi, Kyoung Soon; Park, Jongee; Ozturk, Abdullah; Kim, Soo Young
    In this work, composite layers comprising two-dimensional MoS2 and graphene oxide (GO) were employed as hole injection layers (HILs) in organic light-emitting diodes (OLEDs). MoS2 was fabricated by the butyllithium (BuLi) intercalation method, while GO was synthesized by a modified Hummers method. The X-ray diffraction patterns showed that the intensity of the MoS2 (002) peak at 14.15A degrees decreased with increase in GO content; the GO (001) peak was observed at 10.07A degrees. In the C 1s synchrotron radiation photoemission spectra, the contributions of the C-O, C=O, and O-C=O components increased with increase in GO content. These results indicated that GO was well mixed with MoS2. The lateral size of MoS2 spanned from a few hundreds of nanometers to 1 mu m, while the size of GO was between 400 nm and a few micrometers. Thus, the coverage of the MoS2-GO composite on the ITO surface improved as the GO content increased, owing to the large particle size of GO. Notably, GO with large size could fully cover the indium tin oxide film surface, thus, lowering the roughness. The highest maximum power efficiency (PEmax) was exhibited by the OLED with MoS2-GO 6:4 composite HIL, indicating that similar contents of MoS2 and GO in MoS2-GO composites provide the best results. The OLED with GO HIL showed very high PEmax (4.94 lm W-1) because of very high surface coverage and high work function of GO. These results indicate that the MoS2-GO composites can be used to fabricate HILs in OLEDs.
  • Article
    Citation - WoS: 16
    Citation - Scopus: 16
    Effects of Fluorination and Thermal Shock on the Photocatalytic Activity of Bi2o3< Nanopowders
    (Elsevier, 2021) Bouziani, Asmae; Park, Jongee; Ozturk, Abdullah
    Fluorinated Bi2O3 (F-Bi2O3) nanopowder was prepared via fluorination followed by thermal shock of alpha-Bi2O3 nanopowder. The XRD, FTIR, SEM, and DRS characterization techniques were employed to investigate the effects of fluorine (F) insertion into the alpha-Bi2O3 host and the thermal shock from different temperatures. The crystal structure, optical and photocatalytic properties of the F-Bi2O3 nanopowders prepared were researched. The XRD results confirmed the substitution of O2- with F-. The FTIR results revealed that the coordination of Bi atoms changed upon F- substitution. The incorporation of F into the alpha-Bi2O3 host and thermal shock did not influence the morphology but modified the band structure of alpha-Bi2O3, leading to a red-shift in the optical absorption edge. Also, the bandgap narrowed from 2.8 eV to 2.6 eV. The density functional theory calculation proved that the F 2p orbitals were positioned in the valence band (VB), resulting in broader and more spread bands for F-Bi2O3. The results suggested that the photoexcited charge carrier mobility in the valence band (VB) and conduction band (CB) are enhanced upon F insertion into alpha-Bi2O3. The photocatalytic efficiency of the synthesized nanopowders was assessed by the degradation of Bromocresol Green (BG) under visible light illumination. Photocatalytic activity improved upon fluorination. The F-Bi2O3 nanopowders thermally shocked from higher temperatures showed negligible photocatalytic performance. The best photocatalytic performance of 70% BG degradation was realized after 180 min visible irradiation for the F-Bi2O3 nanopowder thermal shocked from 500 degrees C.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    In Vitro Evaluation of Tooth-Colored Yttria Stabilized Zirconia Ceramics
    (Taylor & Francis Ltd, 2021) Akarsu, Melis Kaplan; Basar, Ahmet Ozan; Sasmazel, Hilal Turkoglu; Park, Jongee; Ozturk, Abdullah
    Effects of MoCl3 and NiCl2, originally incorporated as coloring agent, on the cellular response of 3 mol% yttria stabilized zirconia (3Y-TZP) ceramics was investigated. MoCl3 and NiCl2-MoCl3 incorporated, tooth-colored 3Y-TZP ceramics were produced through cold isostatic pressing at 100 MPa followed by pressureless sintering at 1450 degrees C for 2 h. Aging was performed on the sintered ceramics using distilled water in a reactor at 134 degrees C at 2.3 bar pressure for 2 h. The phases developed during different stages of processing were identified by X-ray diffraction (XRD) analysis. In vitro cell culture studies were carried out using L929 fibroblast cell line. The cell viability and proliferation studies revealed that none of the specimens showed cytotoxicity with respect to coloring. Confocal laser scanning microscope (CLSM) analyses suggested that all of the specimens exhibited good in vitro cytocompatibility. Enhancement in cell attachment, adhesion, and proliferation was observed in all specimens via scanning electron microscope (SEM) analysis. Although the coloring process did not improve the proliferation performance of the aged specimens, the incorporation of transition metals enhanced the in vitro performance of 3Y-TZP ceramics.