2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 6Citation - Scopus: 8Topological Derivative Based Optimization of 3d Porous Elastic Microstructures(Elsevier Science Bv, 2014) Ozdemir, IzzetAs an alternative to the well established microstructural optimization techniques, topological derivative based optimization framework has been proposed and successfully implemented for tailoring/optimizing 2D elastic composites recently, Amstutz et al. [1]. In this paper, an optimization framework for 3D porous elastic microstructures is presented which is based on the notion of topological derivative and the computational homogenization of elastic composites. The sensitivity of the homogenized elasticity tensor to the insertion of infinitesimal hollow spheres within the elastic microstructure is used as the measure for the finite element based evolutionary optimization algorithm. The capabilities of the proposed framework, which is free of any regularization parameter, is assessed by means of example problems including some comparisons with analytical bounds. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 4Predicting and Measuring Surface Enlargement in Forward Rod Extrusion(Asme, 2016) Duran, Deniz; Ozdemir, IzzetSurface enlargement during bulk metal forming processes is one of the key parameters controlling the tribology at the tool-workpiece interface. Not only the surface roughness evolution but also the integrity of the lubricant layer critically reposes on surface enlargement. As an attempt to address this issue, in the first part of this work, a general, deformation gradient based surface enlargement description is implemented in a commercial finite element program. In the second part, forward rod extrusion tests with different area reductions are conducted using customized steel workpieces in which cylindrical copper rods are embedded through the depth. By sectioning the extruded parts and by identifying the position of the copper rods on the lateral surface, average surface enlargement values could be measured locally at different positions along the extrudate. Comparison of experiments and numerical predictions reveal that the deformation gradient based description performs reasonably well in capturing surface enlargement profiles both qualitatively and quantitatively.

