4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 3Citation - Scopus: 4The Effect of Post-Learning Arousal on Memory in Education(inderscience Enterprises Ltd, 2015) Ozcelik, ErolCognitive psychological and neurobiological studies have shown that presenting emotional events after learning enhances memory performance. It has been suggested that arousal induced by emotional stimuli modulates memory consolidation. However, little is known about the memory consolidation process in education. The goal of this study is to investigate the effect of post-learning arousal on memory consolidation in an applied educational setting. Participants were presented with either emotionally arousing or neutral pictures after they studied the instructional materials. Their memory for instructional materials was tested by an immediate free-recall test and a recognition test administered after one week. The results suggest that presenting emotionally arousing pictures compared to neutral pictures enhanced recognition memory performance. These findings support that emotional stimuli facilitated consolidation of memory traces. By incorporating theories in cognitive psychology and neurobiology and using them in an educational setting, this study proposes a novel way to enhance learning through emotional arousal.Conference Object Citation - WoS: 1Haptic User Interface Integration for 3d Game Engines(Springer-verlag Berlin, 2014) Sengul, Gokhan; Cagiltay, Nergiz Ercil; Ozcelik, Erol; Tuner, Emre; Erol, BatuhanTouch and feel senses of human beings provide important information about the environment. When those senses are integrated with the eyesight, we may get all the necessary information about the environment. In terms of human-computer-interaction, the eyesight information is provided by visual displays. On the other hand, touch and feel senses are provided by means of special devices called "haptic" devices. Haptic devices are used in many fields such as computer-aided design, distance-surgery operations, medical simulation environments, training simulators for both military and medical applications, etc. Besides the touch and sense feelings haptic devices also provide force-feedbacks, which allows designing a realistic environment in virtual reality applications. Haptic devices can be categorized into three classes: tactile devices, kinesthetic devices and hybrid devices. Tactile devices simulate skin to create contact sensations. Kinesthetic devices apply forces to guide or inhibit body movement, and hybrid devices attempt to combine tactile and kinesthetic feedback. Among these kinesthetic devices exerts controlled forces on the human body, and it is the most suitable type for the applications such as surgical simulations. The education environments that require skill-based improvements, the touch and feel senses are very important. In some cases providing such educational environment is very expensive, risky and may also consist of some ethical issues. For example, surgical education is one of these fields. The traditional education is provided in operating room on real patients. This type of education is very expensive, requires long time periods, and does not allow any error-and-try type of experiences. It is stressfully for both the educators and the learners. Additionally there are several ethical considerations. Simulation environments supported by such haptic user interfaces provide an alternative and safer educational alternative. There are several studies showing some evidences of educational benefits of this type of education (Tsuda et al 2009; Sutherland et al 2006). Similarly, this technology can also be successfully integrated to the physical rehabilitation process of some diseases requiring motor skill improvements (Kampiopiotis & Theodorakou, 2003). Hence, today simulation environments are providing several opportunities for creating low cost and more effective training and educational environment. Today, combining three dimensional (3D) simulation environments with these haptic interfaces is an important feature for advancing current human-computer interaction. On the other hand haptic devices do not provide a full simulation environment for the interaction and it is necessary to enhance the environment by software environments. Game engines provide high flexibility to create 3-D simulation environments. Unity3D is one of the tools that provides a game engine and physics engine for creating better 3D simulation environments. In the literature there are many studies combining these two technologies to create several educational and training environments. However, in the literature, there are not many researches showing how these two technologies can be integrated to create simulation environment by providing haptic interfaces as well. There are several issues that need to be handled for creating such integration. First of all the haptic devices control libraries need to be integrated to the game engine. Second, the game engine simulation representations and real-time interaction features need to be coordinately represented by the haptic device degree of freedom and force-feedback speed and features. In this study, the integration architecture of Unity 3D game engine and the PHANToM Haptic device for creating a surgical education simulation environment is provided. The methods used for building this integration and handling the synchronization problems are also described. The algorithms developed for creating a better synchronization and user feedback such as providing a smooth feeling and force feedback for the haptic interaction are also provided. We believe that, this study will be helpful for the people who are creating simulation environment by using Unity3D technology and PHANToM haptic interfaces.Article Effects of Graph Type, Conceptual Domain and Perceptual Organization of Information on Graph Comprehension(Wydawnictwo Adam Marszalek, 2012) Ozcelik, Erol; Tekman, Hasan GurkanThe growing interest in using graphs in education created the need for research-based guidelines. This study examined the effects of graph type, conceptual domain and perceptual organization of information on graph comprehension. Forty-two undergraduate students were given eight different kinds of graphs, and their descriptions were analyzed. The results indicated that graphical reasoning was influenced by perceptual grouping of information in visual chunks rather than by type of graph. Learners faced difficulties when an unconventional graph format was used. Implications for research and practice were also discussed.Conference Object The Effect of Split Attention in Surgical Education(Springer-verlag Berlin, 2014) Ozcelik, Erol; Cagiltay, Nergiz Ercil; Sengul, Gokhan; Tuner, Emre; Unal, BulentSurgical education through simulation is an important area to improve the level of education and to decrease the risks, ethical considerations and cost of the educational environments. In the literature there are several studies conducted to better understand the effect of these simulation environments on learning. However among those studies the human-computer interaction point of view is very limited. Surgeons need to look at radiological images such as magnetic resonance images (MRI) to be sure about the location of the patient's tumor during a surgical operation. Thus, they go back and forth between physically separated places (e.g. the operating table and light screen display for MRI volume sets). This study is conducted to investigate the effect of presenting different information sources in close proximity on human performance in surgical education. For this purpose, we have developed a surgical education simulation scenario which is controlled by a haptic interface. To better understand the effect of split attention in surgical education, an experimental study is conducted with 27 subjects. The descriptive results of study show that even the integrated group performed the tasks with a higher accuracy level (by traveling less distance, entering less wrong directions and hitting less walls), the results are not statistically significant. Accordingly, even there are some evidences about the effect of split attention on surgical simulation environments, the results of this study need to be validated by controlling students' skill levels on controlling the haptic devices and 2D/3D space perception skills. The results of this study may guide the system developers to better design the HCI interface of their designs especially for the area of surgical simulation.

