Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Sub-Linear Oscillations via Nonprincipal Solution
    (Editura Acad Romane, 2018) Ozbekler, Abdullah; Mathematics
    In the paper, we give new oscillation criteria for forced sub-linear differential equations with "oscillatory potentials" under the assumption that corresponding linear homogeneous equation is nonoscillatory.
  • Article
    Citation - WoS: 16
    Citation - Scopus: 16
    Lyapunov Type Inequalities for Even Order Differential Equations With Mixed Nonlinearities
    (Springeropen, 2015) Agarwal, Ravi P.; Ozbekler, Abdullah
    In the case of oscillatory potentials, we present Lyapunov and Hartman type inequalities for even order differential equations with mixed nonlinearities: x((2n))(t) + (-1)(n-1) Sigma(m)(i=1) q(i)(t)vertical bar x(t)vertical bar(alpha i-1) x(t) = 0, where n,m epsilon N and the nonlinearities satisfy 0 < alpha(1) < center dot center dot center dot < alpha(j) < 1 < alpha(j+1) < center dot center dot center dot < alpha(m) < 2.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Lyapunov Type Inequalities for Nth Order Forced Differential Equations With Mixed Nonlinearities
    (Amer inst Mathematical Sciences-aims, 2016) Agarwal, Ravi P.; Ozbekler, Abdullah
    In the case of oscillatory potentials, we present Lyapunov type inequalities for nth order forced differential equations of the form x((n))(t) + Sigma(m)(j=1) qj (t)vertical bar x(t)vertical bar(alpha j-1)x(t)= f(t) satisfying the boundary conditions x(a(i)) = x(1)(a(i)) = x(11)(ai) = center dot center dot center dot = x((ki))(ai) = 0; i = 1, 2,..., r, where a(1) < a(2) < ... < a(r), 0 <= k(i) and Sigma(r)(j=1) k(j) + r = n: r >= 2. No sign restriction is imposed on the forcing term and the nonlinearities satisfy 0 < alpha(l) < ... < alpha a(j) < 1 < alpha a(j+1) < ... < alpha(m) < 2. The obtained inequalities generalize and compliment the existing results in the literature.
  • Article
    On the Oscillation of Discrete Volterra Equations With Positive and Negative Nonlinearities
    (Rocky Mt Math Consortium, 2018) Ozbekler, Abdullah
    In this paper, we give new oscillation criteria for discrete Volterra equations having different nonlinearities such as super-linear and sub-linear cases. We also present some new sufficient conditions for oscillation under the effect of the oscillatory forcing term.