3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 4Citation - Scopus: 4Oscillation Criteria for Non-Canonical Second-Order Nonlinear Delay Difference Equations With a Superlinear Neutral Term(Texas State Univ, 2023) Vidhyaa, Kumar S.; Thandapani, Ethiraju; Alzabut, Jehad; Ozbekler, AbdullahWe obtain oscillation conditions for non-canonical second-order nonlinear delay difference equations with a superlinear neutral term. To cope with non-canonical types of equations, we propose new oscillation criteria for the main equation when the neutral coefficient does not satisfy any of the conditions that call it to either converge to 0 or & INFIN;. Our approach differs from others in that we first turn into the non-canonical equation to a canonical form and as a result, we only require one condition to weed out non-oscillatory solutions in order to induce oscillation. The conclusions made here are new and have been condensed significantly from those found in the literature. For the sake of confirmation, we provide examples that cannot be included in earlier works.Article Citation - WoS: 9Citation - Scopus: 10Lyapunov Type Inequalities for Nth Order Forced Differential Equations With Mixed Nonlinearities(Amer inst Mathematical Sciences-aims, 2016) Agarwal, Ravi P.; Ozbekler, AbdullahIn the case of oscillatory potentials, we present Lyapunov type inequalities for nth order forced differential equations of the form x((n))(t) + Sigma(m)(j=1) qj (t)vertical bar x(t)vertical bar(alpha j-1)x(t)= f(t) satisfying the boundary conditions x(a(i)) = x(1)(a(i)) = x(11)(ai) = center dot center dot center dot = x((ki))(ai) = 0; i = 1, 2,..., r, where a(1) < a(2) < ... < a(r), 0 <= k(i) and Sigma(r)(j=1) k(j) + r = n: r >= 2. No sign restriction is imposed on the forcing term and the nonlinearities satisfy 0 < alpha(l) < ... < alpha a(j) < 1 < alpha a(j+1) < ... < alpha(m) < 2. The obtained inequalities generalize and compliment the existing results in the literature.Article Citation - WoS: 2Citation - Scopus: 3Lyapunov and Hartman-Type Inequalities for Higher-Order Discrete Fractional Boundary Value Problems(Univ Miskolc inst Math, 2023) Oguz, Arzu Denk; Alzabut, Jehad; Ozbekler, Abdullah; Jonnalagadda, Jagan MohanBy employing Green's function, we obtain new Lyapunov and Hartman-type inequalities for higher-order discrete fractional boundary value problems. Reported results essentially generalize some theorems existing in the literature. As an application, we discuss the corresponding eigenvalue problems.

