Search Results

Now showing 1 - 7 of 7
  • Article
    Citation - WoS: 16
    Citation - Scopus: 20
    Concise Synthesis, Electrochemistry and Spectroelectrochemistry of Phthalocyanines Having Triazole Functionality
    (Pergamon-elsevier Science Ltd, 2014) Karaca, Huseyin; Sezer, Serdar; Ozalp-Yaman, Seniz; Tanyeli, Cihangir
    The synthesis of novel metallophthalocyanines (M = Zn, Ni) bearing substituted benzyl protected 1,2,3-triazole moieties at peripheral positions is described for the first time via direct cyclotetramerization. These complexes have been characterized by a combination of FT-IR, H-1 NMR, HRMS and UVVis spectroscopy techniques and all the new compounds are highly soluble in most common organic solvents. In addition, the electrochemical and electrochromic behaviors of the complexes are investigated. Cyclic voltammetry and differential pulse voltammetry measurements demonstrate ligand base oxidations and reductions for both the Zn(II) and Ni(II) phthalocyanines by the transfer of one electron in each electrochemical step. The redox couples are identified in situ by monitoring the electronic absorption spectral changes during the electrolysis.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 13
    Novel Pt(ii) Complexes Containing Pyrrole Oxime, Synthesis, Characterization and Dna Binding Studies
    (Elsevier, 2014) Erdogan, Deniz Altunoz; Ozalp-Yaman, Seniz
    Since the discovery of anticancer activity and subsequent clinical success of cisplatin (cis-[PtCl2(NH3)(2)]), platinum-based compounds have since been widely synthesized and studied as potential chemotherapeutic agents. In this sense, three novel nuclease active Pt(II) complexes with general formula; [Pt(NH3)CI(L)] (1), [Pt(L)(2)] (2), and K[PtCl2(L)] (3) in which L is 1-H-pyrrole-2-carbaldehyde oxime were synthesized. Characterization of complexes was performed by elemental analysis, FT-IR, H-1 NMR and mass spectroscopy measurements. Interaction of complexes (1-3) with calf thymus deoxyribonucleic acid (ct-DNA) was investigated by using electrochemical, spectroelectrochemical methods and cleavage studies. The hyperchromic change in the electronic absorption spectrum of the Pt(II) complexes indicates an electrostatic interaction between the complexes and ct-DNA. Binding constant values between 4.42 x 10(3) and 5.09 x 10(3) M-1 and binding side size values between 2 and 3 base pairs were determined from cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Heavy Metal Inhibition on an Alternating Activated Sludge System and Its Comparison To Conventional Methods: Case Study of Cu2+
    (Iwa Publishing, 2021) Buaisha, Magdi; Balku, Saziye; Ozalp-Yaman, Seniz
    In order to understand the behaviour of wastewater treatment plants (WWTPs) with heavy metal presence, the present study evaluates the treatment process in the presence of heavy metals (Cu2+ as a case study) and compares it with the absence of heavy metals. An activated sludge model is improved by means of incorporating other novel inhibitory kinetic and settler models for this evaluation. To achieve this goal, a simulation algorithm is developed using the MATLAB code to detect any heavy metal influence on the aerobic and anoxic growth of heterotrophic and autotrophic biomass. The code also allows for a comparison of treatment plant performance with and without Cu2+ in both conventional and alternating systems. The results reveal that the presence of heavy metals, in case of the present study for Cu2+ at 0.5 mg/L, in a biological treatment system, has an inhibitory effect on the heterotrophic bacteria but more so on the autotrophic bacteria growth and it prevents nitrification and denitrification, thus negatively effecting on the nitrogen removal in the alternating systems.
  • Article
    Citation - WoS: 41
    Citation - Scopus: 48
    Platinated Copper(3-Clip Complexes as Effective Dna-Cleaving and Cytotoxic Agents
    (Wiley-v C H verlag Gmbh, 2008) Ozalp-Yaman, Seniz; de Hoog, Paul; Amadei, Giulio; Pitie, Marguerite; Gamez, Patrick; Dewelle, Janique; Reedijk, Jan
    The synthesis and biological activity of three heteronuclear platinum-copper complexes based on 3-Clip-Phen are reported. These rigid complexes have been designed to alter the intrinsic mechanism of action of both the platinum moiety and the Cu(3-Clip-Phen) unit. The platinum centers of two of these complexes are coordinated to a 3-Clip-Phen moiety, an ammine ligand and two chlorides, which are either cis or trans to each other. The third complex comprises two 3-Clip-Phen units and two chloride ligands bound in a trans fashion to the platinum ion. DNA-cleavage experiments show that the complexes are highly efficient nuclease agents. In addition, a markedly difference in their aptitude to perform direct double-strand cleavage is observed, which appears to be strongly related to the ability of the platinum unit to coordinate to DNA. Indeed, complex 6 is unable to coordinate to DNA, which is reflected by its incapability to carry out double-strand breaks. Nonetheless, this complex exhibits efficient DNA-cleavage activity, and its cytotoxicity is high for several cell lines. Complex 6 shows better antiproliferate activity than both cisplatin and Cu(3-Clip-Phen) toward most cancer cell lines. Furthermore, the cytotoxicity observed for 1 is for most cell lines close to that of cisplatin, or even better. Cu(3-Clip-Phen) induces very low cytotoxic effects, but a marked migratory activity. Complex 6 presents DNA-cleavage properties comparable to the one of Cu(3-Clip-Phen), but it does not show any migratory activity. Interestingly, both Cu(3-Clip-Phen) and 6 induces vacuolisation processes in the cell in contrast to complex 1 and cisplatin. Thus, the four complexes cisplatin tested, Cu(3-Clip-Phen), I and 6 stimulate different cellular responses.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Anticancer Investigation of Platinum and Copper-Based Complexes Containing Quinoxaline Ligands
    (Elsevier, 2022) El-Beshti, Hager Sadek; Yildizhan, Yasemin; Kayi, Hakan; Cetin, Yuksel; Adiguzel, Zelal; Gungor-Topcu, Gamze; Ozalp-Yaman, Seniz
    This research focuses on synthesis and anticancer activity of trans-[(dichloro)bisdipyridlquinoxalino] and [(dichloro)bisdithienylquinoxalino]copper(II)/platinum(II) compounds as prodrug candidates. The binding interaction of these compounds with calf thymus DNA (CT-DNA) and human serum albumin (HSA) of the complexes were assessed with UV titration, thermal decomposition, viscometric, and fluorometric measurements. The nature of the binding of the complexes on DNA were revealed as electrostatic interaction between the cationic metal complexes ion and the negative phosphate groups of CT-DNA upon removal of the counter ion, chloride. In addition, our complexes induced a surface contact through the hydrophobic region of protein. Antitumor activity of the complexes against human glioblastoma A172, LN229, and U87 cell lines and human lung A549, human breast MDA-231, human cervix HeLa, and human prostate PC-3 cell lines were investigated by examining cell viability, oxidative stress, apoptosis, and migration/invasion. Cytotoxicity of the complexes was evaluated by MTT test. The U87 and HeLa cells were investigated as the cancer cells most sensitive to our complexes. The exerted cytotoxic effect of dipyridlquinoxalino and dithienylquinoxalino copper(II)/platinum(II) complexes was attributed to the formation of the reactive oxygen species in vitro. It is clearly demonstrated that trans-[(dichloro)bisdithenylquinoxalino]copper (II) (Cu(dtq)) has the highest DNA degradation potential and anticancer effect among the tested complexes by leading apoptosis. Wound healing and invasion analysis results also supported the anticancer activity of Cu(dtq). (C) 2021 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Spectroelectrochemical Investigations of Pyrimidine-2 Binuclear Platinum(iii) Complexes
    (Pergamon-elsevier Science Ltd, 2014) Ozbek, Ozge; Özalp Yaman, Şeniz; Ozalp-Yaman, Seniz; Ozkan, Ilker; Onal, Ahmet M.; Isci, Huseyin; Özalp Yaman, Şeniz; Chemical Engineering; Chemical Engineering
    The electrochemical behavior of the binuclear platinum(III-III) complexes [Pt-2(C4H3N2S)(4)X-2] (C4H3N2S- = pyrimidine-2-thionate; X- = Cl--,Cl- Br--,Br- I-) have been studied by cyclic voltammetry and insitu spectroelectrochemistry in an acetonitrile-tetrabutylammonium tetrafluoroborate solventelectrolyte couple. An irreversible metal based reduction appears during the cathodic scan for each of the three complexes. The changes in UV-Vis spectra observed in-situ during the reductive electrolysis indicate that all three complexes give the same product, [Pt-2(C4H3N2S)(4)], with a Pt(II)-Pt(II) system. The changes in the reduction potentials of the complexes on changing the axial ligands are interpreted by the changes in the energy of the LUMO level, which is determined by the degree of sigma- and it-interactions of the axial halide ligands with the metal atoms. DFT (B3LYP/LanL2DZ) calculations support our experimental data. (c) 2014 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Radicalic Cleavage Pathway and Dna Docking Studies of Novel Chemotherapic Platinum Agent of 5,6-Di
    (Pergamon-elsevier Science Ltd, 2019) El Hag, Rabia; Abdusalam, Mohamed Musbah; Acilan, Ceyda; Kayi, Hakan; Ozalp-Yaman, Seniz
    A new Pt(II) complex of the general formula ([PtCl2(L)]center dot H2O), where L is 5,6-di-2-thienyl-2,3-dihydropyrazine is synthesized as a potential antitumor agent and its structure is elucidated using a variety of physical and chemical procedures. DNA attaching ability of the complex is studied spectroscopically. UV and fluorometric titration, viscometric measurements and thermal decomposition studies agreed that two binding mode of actions, covalent and non-covalent bindings, are possible simultaneously. DNA helix cleavage studies clearly indicated OH center dot radical pathway in the presence of the reducing agent. Quantum mechanical calculations are carried out to call the minimum energy structures of the ligand and the complex, and to determine the FTIR, H-1 NMR and UV-Vis spectra using the density functional theory (DFT) at the B3LYP/LANL2DZ level of theory. Calculated geometrical parameters for the complex indicated a square-planar structure around the metallic center through the dithiopyridyl ring and two chlorine atoms. The minimum energy structure of the complex obtained from DFT conformational analysis is used in docking studies to investigate complex-DNA binding mechanisms. The complex interacts with DNA through three different mechanisms, namely, intercalation, covalent and electrostatic interaction. The most stable mode of interaction with lowest binding energy (-333.6 kcal/mol) was intercalation mode. Comparisons between theoretical and experimental findings are performed and a good agreement is obtained. (C) 2019 Elsevier Ltd. All rights reserved.