2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 12Citation - Scopus: 13Novel Pt(ii) Complexes Containing Pyrrole Oxime, Synthesis, Characterization and Dna Binding Studies(Elsevier, 2014) Erdogan, Deniz Altunoz; Ozalp-Yaman, SenizSince the discovery of anticancer activity and subsequent clinical success of cisplatin (cis-[PtCl2(NH3)(2)]), platinum-based compounds have since been widely synthesized and studied as potential chemotherapeutic agents. In this sense, three novel nuclease active Pt(II) complexes with general formula; [Pt(NH3)CI(L)] (1), [Pt(L)(2)] (2), and K[PtCl2(L)] (3) in which L is 1-H-pyrrole-2-carbaldehyde oxime were synthesized. Characterization of complexes was performed by elemental analysis, FT-IR, H-1 NMR and mass spectroscopy measurements. Interaction of complexes (1-3) with calf thymus deoxyribonucleic acid (ct-DNA) was investigated by using electrochemical, spectroelectrochemical methods and cleavage studies. The hyperchromic change in the electronic absorption spectrum of the Pt(II) complexes indicates an electrostatic interaction between the complexes and ct-DNA. Binding constant values between 4.42 x 10(3) and 5.09 x 10(3) M-1 and binding side size values between 2 and 3 base pairs were determined from cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies. (C) 2014 Elsevier B.V. All rights reserved.Article Citation - WoS: 16Citation - Scopus: 20Concise Synthesis, Electrochemistry and Spectroelectrochemistry of Phthalocyanines Having Triazole Functionality(Pergamon-elsevier Science Ltd, 2014) Karaca, Huseyin; Sezer, Serdar; Ozalp-Yaman, Seniz; Tanyeli, CihangirThe synthesis of novel metallophthalocyanines (M = Zn, Ni) bearing substituted benzyl protected 1,2,3-triazole moieties at peripheral positions is described for the first time via direct cyclotetramerization. These complexes have been characterized by a combination of FT-IR, H-1 NMR, HRMS and UVVis spectroscopy techniques and all the new compounds are highly soluble in most common organic solvents. In addition, the electrochemical and electrochromic behaviors of the complexes are investigated. Cyclic voltammetry and differential pulse voltammetry measurements demonstrate ligand base oxidations and reductions for both the Zn(II) and Ni(II) phthalocyanines by the transfer of one electron in each electrochemical step. The redox couples are identified in situ by monitoring the electronic absorption spectral changes during the electrolysis.

