2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 7Citation - Scopus: 6A platinum blue complex exerts its cytotoxic activity via DNA damage and induces apoptosis in cancer cells(Wiley, 2017) Adiguzel, Zelal; Ozalp-Yaman, Seniz; Celik, Gokalp; Salem, Safia; Bagci-Onder, Tugba; Senbabaoglu, Filiz; Acilan, CeydaHere, we describe the characteristics of a Pt-blue complex [Pt-4(2-atp)(8)(H2O)(OH)] (2-atp: 2-aminothiophenol) as a prodrug for its DNA-binding properties and its use in cancer therapy. The nature of the interaction between the Pt-blue complex and DNA was evaluated based on spectroscopic measurements, the electronic absorption spectra, thermal behavior, viscosity, fluorometric titration, and agarose gel electrophoresis. Our results suggested that the compound was able to partially intercalate DNA and appeared to induce both single- and double-stranded breaks (DBS) on DNA in vitro, but no DSBs in cells. The ability of the compound to induce DNA damage was dependent on reactive oxygen species (ROS) in vitro. There was also elevated formation of ROS and SOD expression in response to drug treatment in cell culture. The complex was found to be more cytotoxic to cancer cells in comparison with noncancer controls using WST-1 assay. The mean of cell death was determined to be apoptosis as assessed via biochemical, morphological, and molecular observations, including DNA condensation/fragmentation analysis, live cell imaging microscopy, TUNEL analyses, and increase in the levels of pro-apoptotic genes such as Bag3, Bak, Bik, Bmf, and Hrk. Hence, the Pt-blue complex under study grants premise for further studies.Article Citation - WoS: 30Citation - Scopus: 29Interaction of a Novel Platinum Drug With Bovine Serum Albumin: Ftir and Uv-Vis Spectroscopy Analysis(Royal Soc Chemistry, 2015) Korkmaz, Filiz; Erdogan, Deniz Altunoz; Ozalp-Yaman, SenizPlatinum complexes have proven to be very effective in cancer treatment. However, severe side effects of these drugs have lead scientists to pursue new platinum complex derivatives. A novel blue platinum compound, called Platinum-Blue (Pt-Blue), is one of the promising candidate platinum compounds to be used for tumor treatment. In this study, the interaction of Pt-Blue with bovine serum albumin (BSA) has been investigated using UV-Vis and FTIR spectroscopy. One of the findings is that the drug-protein interaction type depends on the drug concentration. Though Pt-Blue is attached to the surface of BSA at high concentrations, it interacts with a hydrophobic region of the protein at low concentrations with a binding constant of 1.93 x 10(5) M-1. Spectroscopic results indicate the hydrophobic docking position to be around Trp 213 in domain II, which is surrounded by a number of Asp and Glu. During this interaction, helices such as helix-10, helix-18, helix-19 and helix-24 change orientation and/or partially unfold to make room for the compound. Binding constants at high and low concentrations of Pt-Blue are determined using UV-Vis spectroscopy, which are found to be comparable to cisplatin. FTIR spectroscopy also reveals that the interaction between Pt-Blue and BSA is noncovalent, which makes the candidate drug favorable because it is available for DNA binding while being carried by albumin.

