Search Results

Now showing 1 - 10 of 17
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    On the q-bernstein Polynomials of Piecewise Linear Functions in the Case q > 1
    (Pergamon-elsevier Science Ltd, 2013) Kaskaloglu, Kerem; Ostrovska, Sofiya
    The aim of this paper is to present new results related to the approximation of continuous functions by their q-Bernstein polynomials in the case q > 1. The first part of the paper is devoted to the behavior of the q-Bernstein polynomials of piecewise linear functions. This study naturally leads to the notion of truncated q-Bernstein polynomials introduced in the paper. The second part deals with the asymptotic estimates for the norms of the m-truncated q-Bernstein polynomials, in the case where both n and q vary. The results of the paper are illustrated by numerical examples. (C) 2012 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    The Approximation of Logarithmic Function by q-bernstein Polynomials in the Case q > 1
    (Springer, 2007) Ostrovska, Sofiya
    Since in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[ 0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[ 0, 1] uniformly approximated by their q-Bernstein polynomials ( q > 1) remains open. It is known that the approximation occurs for functions admitting an analytic continuation into a disc {z : | z| < R}, R > 1. For functions without such an assumption, no general results on approximation are available. In this paper, it is shown that the function f ( x) = ln( x + a), a > 0, is uniformly approximated by its q-Bernstein polynomials ( q > 1) on the interval [ 0, 1] if and only if a >= 1.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    On the q-bernstein Polynomials of the Logarithmic Function in the Case q > 1
    (Walter de Gruyter Gmbh, 2016) Ostrovska, Sofiya
    The q-Bernstein basis used to construct the q-Bernstein polynomials is an extension of the Bernstein basis related to the q-binomial probability distribution. This distribution plays a profound role in the q-boson operator calculus. In the case q > 1, q-Bernstein basic polynomials on [0, 1] combine the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present new results related to the q-Bernstein polynomials B-n,B- q of discontinuous functions in the case q > 1. The behavior of polynomials B-n,B- q(f; x) for functions f possessing a logarithmic singularity at 0 has been examined. (C) 2016 Mathematical Institute Slovak Academy of Sciences
  • Article
    Citation - WoS: 7
    On the Approximation of Analytic Functions by the q-bernstein Polynomials in the Case q > 1
    (Kent State University, 2010) Ostrovska, Sofiya
    Since for q > 1, the q-Bernstein polynomials B(n,q) are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f is an element of C[0, 1] and admits an analytic continuation f(z) into {z : |z| < a}, then B(n,q) (f; z) -> f (z) as n -> infinity, uniformly on any compact set in {z : |z| < a}.
  • Article
    Citation - WoS: 71
    Citation - Scopus: 74
    On the Lupas q-analogue of the Bernstein Operator
    (Rocky Mt Math Consortium, 2006) Ostrovska, Sofiya
    Let R-n(f,q;x) : C[0, 1] -> C[0, 1] be q-analogues of the Bernstein operators defined by Lupas in 1987. If q = 1, then R-n (f, 1; x) are classical Bernstein polynomials. For q not equal 1, the operators R-n (f, q; x) are rational functions rather than polynomials. The paper deals with convergence properties of the sequence {R-n (f, q; x)}. It is proved that {R-n (f, q(n); x)} converges uniformly to f(x) for any f(x) is an element of C[0, 1] if and only if q(n) -> 1. In the case q > 0, q not equal 1 being fixed the sequence I R. (f, q; x) I converges uniformly to f(x) is an element of C[0, 1] if and only if f(x) is linear.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 1
    The Continuity in Q of the Lupaş Q-Analogues of the Bernstein Operators
    (Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgue Gurel; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Mathematics; Mathematics
    The Lupas q-analogue Rn,q of the Bernstein operator is the first known q-version of the Bernstein polynomials. It had been proposed by A. Lupas in 1987, but gained the popularity only 20 years later, when q-analogues of classical operators pertinent to the approximation theory became an area of intensive research. In this work, the continuity of operators Rn,q with respect to parameter q in the strong operator topology and in the uniform operator topology has been investigated. The cases when n is fixed and n -> infinity have been considered. (c) 2022 Elsevier Inc. All rights reserved.
  • Article
    Qualitative results on the convergence of the q-Bernstein polynomials
    (North Univ Baia Mare, 2015) Ostrovska, Sofiya; Turan, Mehmet
    Despite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented.
  • Article
    Citation - WoS: 2
    The Approximation of Power Function by the q-bernstein Polynomials in the Case q > 1
    (Element, 2008) Ostrovska, Sofiya
    Since for q > 1. q-Bernstein polynomials are not positive linear operators on C[0, 1] the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. It is known that, in the case q > 1. the q-Bernstein polynomials approximate the entire functions and, in particular, polynomials uniformly on any compact set in C. In this paper. the possibility of the approximation for the function (z + a)(alpha), a >= 0. with a non-integer alpha > -1 is studied. It is proved that for a > 0, the function is uniformly approximated on any compact set in {z : vertical bar z vertical bar < a}, while on any Jordan arc in {z : vertical bar z vertical bar > a}. the uniform approximation is impossible, In the case a = 0(1) the results of the paper reveal the following interesting phenomenon: the power function z(alpha), alpha > 0: is approximated by its, q-Bernstein polynomials either on any (when alpha is an element of N) or no (when alpha is not an element of N) Jordan arc in C.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On the Rate of Convergence for the q-durrmeyer Polynomials in Complex Domains
    (Walter de Gruyter Gmbh, 2024) Gurel, Ovgu; Ostrovska, Sofiya; Turan, Mehmet
    The q-Durrmeyer polynomials are one of the popular q-versions of the classical operators of approximation theory. They have been studied from different points of view by a number of researchers. The aim of this work is to estimate the rate of convergence for the sequence of the q-Durrmeyer polynomials in the case 0 < q < 1. It is proved that for any compact set D subset of C, the rate of convergence is O(q(n)) as n -> infinity. The sharpness of the obtained result is demonstrated.
  • Article
    Citation - WoS: 15
    Citation - Scopus: 18
    The Sharpness of Convergence Results for q-bernstein Polynomials in The Case q > 1
    (Springer Heidelberg, 2008) Ostrovska, Sofiya
    Due to the fact that in the case q > 1 the q-Bernstein polynomials are no longer positive linear operators on C[0, 1], the study of their convergence properties turns out to be essentially more difficult than that for q 1. In this paper, new saturation theorems related to the convergence of q-Bernstein polynomials in the case q > 1 are proved.