Search Results

Now showing 1 - 4 of 4
  • Article
    On the Lupas q-transform of Unbounded Functions
    (Walter de Gruyter Gmbh, 2023) Ostrovska, Sofiya; Turan, Mehmet
    The Lupa , s q-transform comes out naturally in the study of the Lupa , s q-analogue of the Bernstein operator. It is closely related to the Heine q-distribution which has a numerous application in q-boson operator calculus and to the Valiron method of summation for divergent series. In this paper, the Lupa , s q-transform (lambda(q)f)(z), q is an element of (0, 1), of unbounded functions is considered in distinction to the previous researches, where only the case f is an element of C[0, 1] have been investigated. First, the condition for a function to possess the Lupa , s q-transform is presented. Also, results concerning the connection between growth rate of the function f (t) as t -> 1(-) and the growth of its Lupa , s q-transform (lambda(q)f)(z) as z -> infinity are established. (c) 2023 Mathematical Institute Slovak Academy of Sciences
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    On the q-bernstein Polynomials of the Logarithmic Function in the Case q > 1
    (Walter de Gruyter Gmbh, 2016) Ostrovska, Sofiya
    The q-Bernstein basis used to construct the q-Bernstein polynomials is an extension of the Bernstein basis related to the q-binomial probability distribution. This distribution plays a profound role in the q-boson operator calculus. In the case q > 1, q-Bernstein basic polynomials on [0, 1] combine the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present new results related to the q-Bernstein polynomials B-n,B- q of discontinuous functions in the case q > 1. The behavior of polynomials B-n,B- q(f; x) for functions f possessing a logarithmic singularity at 0 has been examined. (C) 2016 Mathematical Institute Slovak Academy of Sciences
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On the Rate of Convergence for the q-durrmeyer Polynomials in Complex Domains
    (Walter de Gruyter Gmbh, 2024) Gurel, Ovgu; Ostrovska, Sofiya; Turan, Mehmet
    The q-Durrmeyer polynomials are one of the popular q-versions of the classical operators of approximation theory. They have been studied from different points of view by a number of researchers. The aim of this work is to estimate the rate of convergence for the sequence of the q-Durrmeyer polynomials in the case 0 < q < 1. It is proved that for any compact set D subset of C, the rate of convergence is O(q(n)) as n -> infinity. The sharpness of the obtained result is demonstrated.
  • Article
    Uncorrelatedness Sets of Discrete Random Variables Via Vandermonde-Type Determinants
    (Walter de Gruyter Gmbh, 2019) Turan, Mehmet; Ostrovska, Sofiya; Ozban, Ahmet Yasar
    Given random variables X and Y having finite moments of all orders, their uncorrelatedness set is defined as the set of all pairs (j, k) is an element of N-2; for which X-j and Y-kappa are uncorrelated. It is known that, broadly put, any subset of N-2 can serve as an uncorrelatedness set. This claim is no longer valid for random variables with prescribed distributions, in which case the need arises so as to identify the possible uncorrelatedness sets. This paper studies the uncorrelatedness sets for positive random variables uniformly distributed on three points. Some general features of these sets are derived. Two related Vandermonde-type determinants are examined and applied to describe uncorrelatedness sets in some special cases. (C) 2019 Mathematical Institute Slovak Academy of Sciences