Search Results

Now showing 1 - 7 of 7
  • Article
    Citation - WoS: 14
    Citation - Scopus: 14
    On Relations Between Transportation Cost Spaces and l1<
    (Academic Press inc Elsevier Science, 2020) Ostrovska, Sofiya; Ostrovskii, Mikhail I.
    The present paper deals with some structural properties of transportation cost spaces, also known as Arens-Eells spaces, Lipschitz-free spaces and Wasserstein spaces. The main results of this work are: (1) A necessary and sufficient condition on an infinite metric space M, under which the transportation cost space on M contains an isometric copy of l(1). The obtained condition is applied to answer the open questions asked by Cuth and Johanis (2017) concerning several specific metric spaces. (2) The description of the transportation cost space of a weighted finite graph G as the quotient l(1) (E(G))/Z(G), where E(G) is the edge set and Z(G) is the cycle space of G. (C) 2020 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 1
    The Continuity in Q of the Lupaş Q-Analogues of the Bernstein Operators
    (Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgue Gurel; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Mathematics; Mathematics
    The Lupas q-analogue Rn,q of the Bernstein operator is the first known q-version of the Bernstein polynomials. It had been proposed by A. Lupas in 1987, but gained the popularity only 20 years later, when q-analogues of classical operators pertinent to the approximation theory became an area of intensive research. In this work, the continuity of operators Rn,q with respect to parameter q in the strong operator topology and in the uniform operator topology has been investigated. The cases when n is fixed and n -> infinity have been considered. (c) 2022 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Complementability of Isometric Copies of L1 in Transportation Cost Spaces
    (Academic Press inc Elsevier Science, 2024) Ostrovska, Sofiya; Ostrovskii, Mikhail I.
    This work aims to establish new results pertaining to the structure of transportation cost spaces. Due to the fact that those spaces were studied and applied in various contexts, they have also become known under different names such as Arens-Eells spaces, Lipschitz-free spaces, and Wasserstein spaces. The main outcome of this paper states that if a metric space X is such that the transportation cost space on X contains an isometric copy of L1, then it contains a 1-complemented isometric copy of $1. (c) 2023 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Shape-Preserving Properties of the Limit q-durrmeyer Operator
    (Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, Mehmet
    The present work aims to establish the shape-preserving properties of the limit q- Durrmeyer operator, D q for 0 < q < 1. It has been proved that the operator is monotonicity- and convexity-preserving. What is more, it maps a function m - convex along {q (j)}(infinity)(j =0) to a function m - convex along any sequence { xq( j )}(infinity)(j =0) , x is an element of (0, 1). (c) 2024 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Analytical Properties of the Lupas q-transform
    (Academic Press inc Elsevier Science, 2012) Ostrovska, Sofiya
    The Lupas q-transform emerges in the study of the limit q-Lupas operator. The latter comes out naturally as a limit for a sequence of the Lupas q-analogues of the Bernstein operator. Given q is an element of (0, 1), f is an element of C left perpendicular0, 1right perpendicular, the q-Lupas transform off is defined by (Lambda(q)f) (z) := 1/(-z; q)(infinity) . Sigma(infinity)(k=0) f(1 - q(k))q(k(k -1)/2)/(q; q)(k)z(k). The transform is closely related to both the q-deformed Poisson probability distribution, which is used widely in the q-boson operator calculus, and to Valiron's method of summation for divergent series. In general, Lambda(q)f is a meromorphic function whose poles are contained in the set J(q) := {-q(-j)}(j=0)(infinity). In this paper, we study the connection between the behaviour of f on leftperpendicular0, 1right perpendicular and the decay of Lambda(q)f as z -> infinity. (C) 2012 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    On Embeddings of Locally Finite Metric Spaces Into lp<
    (Academic Press inc Elsevier Science, 2019) Ostrovska, Sofiya; Ostrovskii, Mikhail I.
    It is known that if finite subsets of a locally finite metric space M admit C-bilipschitz embeddings into l(p) (1 <= p <= infinity), then for every epsilon > 0, the space M admits a (C + epsilon)-bilipschitz embedding into l(p). The goal of this paper is to show that for p not equal 2, infinity this result is sharp in the sense that e cannot be dropped out of its statement. (C) 2019 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 7
    On the q-bernstein Polynomials of Rational Functions With Real Poles
    (Academic Press inc Elsevier Science, 2014) Ostrovska, Sofiya; Ozban, Ahmet Yasar
    The paper aims to investigate the convergence of the q-Bernstein polynomials B-n,B-q(f; x) attached to rational functions in the case q > 1. The problem reduces to that for the partial fractions (x - alpha)(-J), j is an element of N. The already available results deal with cases, where either the pole a is simple or alpha not equal q(-m), m is an element of N-0. Consequently, the present work is focused on the polynomials Bn,q(f; x) for the functions of the form f (x) = (x - q(-m))(-j) with j >= 2. For such functions, it is proved that the interval of convergence of {B-n,B-q(f; x)} depends not only on the location, but also on the multiplicity of the pole - a phenomenon which has not been considered previously. (C) 2013 Elsevier Inc. All rights reserved.