4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 4Citation - Scopus: 4Template-free microsphere and hollow sphere formation of polymethylanilines(Wiley, 2009) Icli, Merve; Onal, Ahmet M.; Cihaner, AtillaBACKGROUND: Microsphere and/or hollow sphere formation of methyl-substituted polyaniline derivatives was investigated via chemical polymerization where different sets of conditions were examined. It was found that a variety of parameters (e.g. types and concentrations of monomer and oxidant, polymerization time, solvent with and without acid) have a crucial influence on the morphology of the resulting polyaniline derivatives. RESULTS: Structures with desired morphologies (with or without microspheres and hollow spheres) may be obtained in a controlled manner by changing the parameters. Moreover, the electrochemical and optical properties of the polymers in the presence of acid and/or base were investigated via cyclic voltammetry and UV-visible and electron spin resonance spectroscopic techniques. It is noteworthy that the morphologies of microspheres and/or hollow spheres remained unchanged after repeated acid and base treatments. CONCLUSION: Micro/hollow spherical structures were successfully prepared via chemical polymerization of various substituted anilines by using ammonium persulfate as oxidant. It was found that the type of oxidant and monomers along with the polymerization time are quite important factors for the formation of micro/hollow spheres. Furthermore, hydrogen bond formation does not play any crucial role for the formation of these spheres. Chemically and electrochemically doped/dedoped states of microspheres and/or hollow spheres are very sensitive, and give rapid response towards vapours of HCl and NH3, which makes them amenable for use in sensors. (c) 2009 Society of Chemical IndustryArticle Citation - WoS: 52Citation - Scopus: 57Members of Cmy Color Space: Cyan and Magenta Colored Polymers Based on Oxadiazole Acceptor Unit(Amer Chemical Soc, 2012) Ozkut, Merve Icli; Algi, Melek Pamuk; Oztas, Zahide; Algi, Fatih; Onal, Ahmet M.; Cihaner, AtillaIn this study, three novel oxadiazole-based polymers were synthesized and their electrochemical and optical properties were investigated. The polymers were found to have both p- and n-type doping properties accompanied by electrochromic response. Two polymer films exhibit cyan and magenta colors, which constitute two legs of CMY color spaces, in their neutral states and they are soluble in common-organic solvents. According to the color mixing theory, all colors in the visible spectrum including black color can be obtained by using these polymers with a yellow colored electrochromic polymer. Among these polymers, the polymer bearing propyledioxythiophene donor units has some superior properties like high stability (it retains 94% of its electroactivity after 2000 cycles), solubility, and high coloration efficiency (230 cm(2)/C), whereas as expected ethylenedioxythiophene containing one has the lowest band gap as 1.08 eV.Article Citation - WoS: 143Citation - Scopus: 157Donor-Acceptor Polymer Electrochromes With Tunable Colors and Performance(Amer Chemical Soc, 2010) Icli, Merve; Pamuk, Melek; Algi, Fatih; Onal, Ahmet M.; Cihaner, AtillaTo demonstrate the effect of donor (D) and acceptor (A) units on the structure property relationships of electrochromic polymers, design, synthesis, characterization and polymerization of a series of D A type systems, 1-5, based on thiophene, 3,4-ethylenedioxythiophene, and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine as D units and 2,1,3-benzoselenadiazole, 2,1,3-benzothiadiazole and 2-decyl-2H-benzo[d][1,2,3]triazole as A units are highlighted. It is found that these units play key roles on the redox behavior, band gap, neutral state color, and the electrochromic performance (stability, optical contrast, coloration efficiency, and switching time) of the system. It is noted that electropolymerization of these D-A systems provides processable low band gap electrochromes, P1-P5, exhibiting high redox stability, coloration efficiency, transmittance and/or contrast ratio and low response time. Furthermore, P1-P5 reflect various hues of blue and green pallets of the RGB color-space in the neutral state. In particular, it is noteworthy that P5 is an excellent blue-to-colorless polymeric electrochrome, which, to our best knowledge, exhibits the highest optical contrast and coloration efficiency among the D A type systems. The panoramic breadth of the neutral state colors and intriguing features of these polymeric materials further confirm that D A approach allows engineering tunable electrochromes, which hold promise for commercialization of polymeric ROB electrochromics.Article Citation - WoS: 86Nanoceria-Supported Ruthenium(0) Nanoparticles: Highly Active and Stable Catalysts for Hydrogen Evolution From Water(Amer Chemical Soc, 2018) Demir, Elif; Akbayrak, Serdar; Onal, Ahmet M.; Ozkar, SaimRuthenium(0) nanoparticles supported on nanoceria (Ru-0/CeO2) were prepared by reduction of Ru3+ ions on the surface of ceria using aqueous solution of NaBH4. The Ru-0/CeO2 samples were characterized by advanced analytical tools and employed as electrocatalysts on the glassy carbon electrode (GCE) in hydrogen evolution from water. The GCE, modified by Ru-0/CeO2 (1.86 wt % Ru), provides an incredible electrocatalytic activity with a high exchange current density of 0.67 mA.cm(-2), low overpotential of 47 mV at j = 10 mA.cm(-2), and small Tafel slope of 41 mV.dec(-1). Moreover, this modified GCE provides an unprecedented long-term stability without changing the onset potential (33 mV) even after 10 000 scans in acidic water splitting at room temperature. The hydrogen gas, evolved during the water splitting using the Ru-0/CeO2 (1.86 wt % Ru) electrocatalyst, was also collected. The amount of the evolved H-2 gas matches well with the calculated value, which indicates the achievement of nearly 100% Faradaic efficiency.

