Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Development and Validation of a Sensitive Assay for the Quantification of Arachidonoylcyclopropylamide (acpa) in Cell Culture by Lc-ms/Ms
    (Springer int Publ Ag, 2023) Boyacioglu, Ozge; Recber, Tuba; Kir, Sedef; Korkusuz, Petek; Nemutlu, Emirhan
    Synthetic and natural cannabinoid derivatives are highly investigated as drug candidates due to their antinociceptive, antiepileptic and anticancer potential. Arachidonoylcyclopropylamide (ACPA) is a synthetic cannabinoid with antiproliferative and apoptotic effects on non-small cell lung cancer and pancreatic and endometrial carcinoma. Thus, ACPA has a great potential for being used as an anticancer drug for epithelial cancers. Therefore, determining the levels of ACPA in biological fluids, cells, tissues and pharmaceutical dosage forms is crucial in monitoring the effects of various pharmacological, physiological and pathological stimuli on biological systems. However, the challenge in the quantification of ACPA is its short half-life and lack of UV signal. Therefore, we developed a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for sensitive and selective quantification of ACPA in cell culture medium and intracellular matrix. Multiple reaction monitoring in the positive ionization mode was used for detection with 344 -> 203 m/z transitions. The separation of ACPA was performed on C18 column (50 x 3.0 mm, 2.1 mu m) with the mobile phase run in the gradient mode with 0.1% formic acid (FA) in water and 0.1% FA in acetonitrile at a flow rate of 0.3 ml/min. The assay was linear in the concentration range of 1.8-1000 ng/mL (r = 0.999). The validation studies revealed that the method was linear, sensitive, accurate, precise, selective, repeatable, robust and rugged. Finally, the developed method was applied to quantify ACPA in cell culture medium and intracellular matrix.
  • Article
    Citation - WoS: 21
    Citation - Scopus: 23
    Composite Nanofibers Incorporating Alpha Lipoic Acid and Atorvastatin Provide Neuroprotection After Peripheral Nerve Injury in Rats
    (Elsevier, 2020) Haidar, Mohammad Karim; Timur, Selin Seda; Kazanci, Atilla; Turkoglu, Omer Faruk; Gursoy, R. Neslihan; Nemutlu, Emirhan; Eroglu, Hakan
    Despite the new treatment strategies within the last 30 years, peripheral nerve injury (PNI) is still a worldwide clinical problem. The incidence rate of PNIs is 1 in 1000 individuals per year. In this study, we designed a composite nanoplatform for dual therapy in peripheral nerve injury and investigated the in-vivo efficacy in rat sciatic nerve crush injury model. Alpha-lipoic acid (ALA) was loaded into poly lactic-co-glycolic acid (PLGA) electrospun nanofibers which would release the drug in a faster manner and atorvastatin (ATR) loaded chitosan (CH) nanoparticles were embedded into PLGA nanofibers to provide sustained release. Sciatic nerve crush was generated via Yasargil aneurism clip with a holding force of 50 g/cm(2). Nanofiber formulations were administered to the injured nerve immediately after trauma. Functional recovery of operated rat hind limb was evaluated using the sciatic functional index (SFI), extensor postural thrust (EPT), withdrawal reflex latency (WRL) and Basso, Beattie, and Bresnahan (BBB) test up to one month in the post-operative period at different time intervals. In addition to functional recovery assessments, ultrastructural and biochemical analyses were carried out on regenerated nerve fibers. L-929 mouse fibroblast cell line and B35 neuroblastoma cell line were used to investigate the cytotoxicity of nanofibers before in-vivo experiments. The neuroprotection potential of these novel nanocomposite fiber formulations has been demonstrated after local implantation of composite nanofiber sheets incorporating ALA and ATR, which contributed to the recovery of the motor and sensory function and nerve regeneration in a rat sciatic nerve crush injury model.