3 results
Search Results
Now showing 1 - 3 of 3
Review Citation - WoS: 34Citation - Scopus: 38Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: a Review(Dove Medical Press Ltd, 2020) Rabiee, Navid; Ahmadi, Sepideh; Arab, Zeynab; Bagherzadeh, Mojtaba; Safarkhani, Moein; Nasseri, Behzad; Tayebi, LobatWith the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.Article Citation - WoS: 24Citation - Scopus: 27The Pimpled Gold Nanosphere: a Superior Candidate for Plasmonic Photothermal Therapy(Dove Medical Press Ltd, 2020) Nasseri, Behzad; Turk, Mustafa; Kosemehmetoglu, Kemal; Kaya, Murat; Piskin, Erhan; Rabiee, Navid; Webster, Thomas J.Background: The development of highly efficient nanoparticles to convert light to heat for anti-cancer applications is quite a challenging field of research. Methods: In this study, we synthesized unique pimpled gold nanospheres (PGNSs) for plasmonic photothermal therapy (PPTT). The light-to-heat conversion capability of PGNSs and PPTT damage at the cellular level were investigated using a tissue phantom model. The ability of PGNSs to induce robust cellular damage was studied during cytotoxicity tests on colorectal adenocarcinoma (DLD-1) and fibroblast cell lines. Further, a numerical model of plasmonic (COMSOL Multiphysics) properties was used with the PPTT experimental assays. Results: A low cytotoxic effect of thiolated polyethylene glycol (SH-PEG400-SH-) was observed which improved the biocompatibility of PGNSs to maintain 89.4% cell viability during cytometry assays (in terms of fibroblast cells for 24 hrs at a concentration of 300 mu g/mL). The heat generated from the nanoparticle-mediated phantom models resulted in Delta T=30 degrees C, Delta T=23.1 degrees C and Delta T=21 degrees C for the PGNSs, AuNRs, and AuNPs, respectively (at a 300 mu g/mL concentration and for 325 sec). For the in vitro assays of PPTT on cancer cells, the PGNS group induced a 68.78% lethality (apoptosis) on DLD-1 cells. Fluorescence microscopy results showed the destruction of cell membranes and nuclei for the PPTT group. Experiments further revealed a penetration depth of sufficient PPTT damage in a physical tumor model after hematoxylin and eosin (H&E) staining through pathological studies (at depths of 2, 3 and 4 cm). Severe structural damages were observed in the tissue model through an 808-nm laser exposed to the PGNSs. Conclusion: Collectively, such results show much promise for the use of the present PGNSs and photothermal therapy for numerous anti-cancer applications.Article Citation - WoS: 13Citation - Scopus: 13Penetration Depth in Nanoparticles Incorporated Radiofrequency Hyperthermia Into the Tissue: Comprehensive Study With Histology and Pathology Observations(inst Engineering Technology-iet, 2019) Nasseri, Behzad; Kocum, Ismail Cengiz; Seymen, Cemile Merve; Rabiee, NavidIn present study, the effective penetration of radiofrequency (RF) induced gold decorated iron oxide nanoparticles (GS@IONPs) hyperthermia was investigated. The effective penetration depth of RF also the damage potency of hyperthermia was evaluated during histopathology observations which were done on the chicken breast tissue and hepatocellular carcinoma (HCC) models. The thermal damages are well- documented in our previous cellular study which was engaged with potency of RF hyperthermia in Epithelial adenocarcinoma (MCF-7) and fibroblast (L-929) cells deaths [1]. In recent work, PEGylated iron oxide nanoparticles (IONPs) were used as base platform for gold magnetic nanoparticles (GS@IONPs) formation. The 144.00015 MHz, 180W RF generator was applied for stimulating the nanoparticles. The chicken breast tissue and the hepatocellular tumor model was considered in the experimental section. In histology studies, the structural changes also the effective penetration depth of RF induced nanoparticles was observed through microscopic monitoring of the tissue slices in histology observations (Gazi medical school). The highest damage level was seen in 8.0 mu m tissue slices where lower damages were seen in depth of 1.0 cm and more inside tissue. The histology observations clarified the effective penetration depth of RF waves and irreversible damages in the 2.0 cm inside the tissue.

