Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 31
    Citation - Scopus: 50
    Neural Network and Classification Approach in Identifying Customer Behavior in the Banking Sector: a Case Study of an International Bank
    (Wiley, 2015) Ogwueleka, Francisca Nonyelum; Misra, Sanjay; Colomo-Palacios, Ricardo; Fernandez, Luis
    The customer relationship focus for banks is in development of main competencies and strategies of building strong profitable customer relationships through considering and managing the customer impression, influence on the culture of the bank, satisfactory treatment, and assessment of valued relationship building. Artificial neural networks (ANNs) are used after data segmentation and classification, where the designed model register records into two class sets, that is, the training and testing sets. ANN predicts new customer behavior from previously observed customer behavior after executing the process of learning from existing data. This article proposes an ANN model, which is developed using a six-step procedure. The back-propagation algorithm is used to train the ANN by adjusting its weights to minimize the difference between the current ANN output and the desired output. An evaluation process is conducted to determine whether the ANN has learned how to perform. The training process is halted periodically, and its performance is tested until an acceptable result is obtained. The principles underlying detection software are grounded in classical statistical decision theory.
  • Article
    Citation - WoS: 34
    Citation - Scopus: 59
    A Review of Soft Techniques for Sms Spam Classification: Methods, Approaches and Applications
    (Pergamon-elsevier Science Ltd, 2019) Abayomi-Alli, Olusola; Misra, Sanjay; Abayomi-Alli, Adebayo; Odusami, Modupe
    Background: The easy accessibility and simplicity of Short Message Services (SMS) have made it attractive to malicious users thereby incurring unnecessary costing on the mobile users and the Network providers' resources. Aim: The aim of this paper is to identify and review existing state of the art methodology for SMS spam based on some certain metrics: AI methods and techniques, approaches and deployed environment and the overall acceptability of existing SMS applications. Methodology: This study explored eleven databases which include IEEE, Science Direct, Springer, Wiley, ACM, DBLP, Emerald, SU, Sage, Google Scholar, and Taylor and Francis, a total number of 1198 publications were found. Several screening criteria were conducted for relevant papers such as duplicate removal, removal based on irrelevancy, abstract eligibility based on the removal of papers with ambiguity (undefined methodology). Finally, 83 papers were identified for depth analysis and relevance. A quantitative evaluation was conducted on the selected studies using seven search strategies (SS): source, methods/ techniques, AI approach, architecture, status, datasets and SMS spam mobile applications. Result: A Quantitative Analysis (QA) was conducted on the selected studies and the result based on existing methodology for classification shows that machine learning gave the highest result with 49% with algorithms such as Bayesian and support vector machines showing highest usage. Unlike statistical analysis with 39% and evolutionary algorithms gave 12%. However, the QA for feature selection methods shows that more studies utilized document frequency, term frequency and n-grams techniques for effective features selection process. Result based on existing approaches for content-based, non-content and hybrid approaches is 83%, 5%, and 12% respectively. The QA based on architecture shows that 25% of existing solutions are deployed on the client side, 19% on server-side, 6% collaborative and 50% unspecified. This survey was able to identify the status of existing SMS spam research as 35% of existing study was based on proposed new methods using existing algorithms and 29% based on only evaluation of existing algorithms, 20% was based on proposed methods only. Conclusion: This study concludes with very interesting findings which shows that the majority of existing SMS spam filtering solutions are still between the "Proposed" status or "Proposed and Evaluated" status. In addition, the taxonomy of existing state of the art methodologies is developed and it is concluded that 8.23% of Android users actually utilize this existing SMS anti-spam applications. Our study also concludes that there is a need for researchers to exploit all security methods and algorithm to secure SMS thus enhancing further classification in other short message platforms. A new English SMS spam dataset is also generated for future research efforts in Text mining, Tele-marketing for reducing global spam activities.