2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 21Citation - Scopus: 34An Artificial Neural Network Model for Road Accident Prediction: a Case Study of a Developing Country(Budapest Tech, 2014) Ogwueleka, Francisca Nonyelum; Misra, Sanjay; Ogwueleka, Toochukwu Chibueze; Fernandez-Sanz, L.; Computer EngineeringRoad traffic accidents (RTA) are one of the major root causes of the unnatural loses of human beings all over the world. Although the rates of RTAs are decreasing in most developed countries, this is not the case in developing countries. The increase in the number of vehicles and inefficient drivers on the road, as well as to the poor conditions and maintenance of the roads, are responsible for this crisis in developing countries. In this paper, we produce a design of an Artificial Neural Network (ANN) model for the analysis and prediction of accident rates in a developing country. We apply the most recent (1998 to 2010) data to our model. In the design, the number of vehicles, accidents, and population were selected and used as model parameters. The sigmoid and linear functions were used as activation functions with the feed forward-back propagation algorithm. The performance evaluation of the model signified that the ANN model is better than other statistical methods in use.Article Citation - WoS: 47Citation - Scopus: 62An Empirical Analysis of the Effectiveness of Software Metrics and Fault Prediction Model for Identifying Faulty Classes(Elsevier, 2017) Kumar, Lov; Misra, Sanjay; Rath, Santanu Ku.Software fault prediction models are used to predict faulty modules at the very early stage of software development life cycle. Predicting fault proneness using source code metrics is an area that has attracted several researchers' attention. The performance of a model to assess fault proneness depends on the source code metrics which are considered as the input for the model. In this work, we have proposed a framework to validate the source code metrics and identify a suitable set of source code metrics with the aim to reduce irrelevant features and improve the performance of the fault prediction model. Initially, we applied a t-test analysis and univariate logistic regression analysis to each source code metric to evaluate their potential for predicting fault proneness. Next, we performed a correlation analysis and multivariate linear regression stepwise forward selection to find the right set of source code metrics for fault prediction. The obtained set of source code metrics are considered as the input to develop a fault prediction model using a neural network with five different training algorithms and three different ensemble methods. The effectiveness of the developed fault prediction models are evaluated using a proposed cost evaluation framework. We performed experiments on fifty six Open Source Java projects. The experimental results reveal that the model developed by considering the selected set of source code metrics using the suggested source code metrics validation framework as the input achieves better results compared to all other metrics. The experimental results also demonstrate that the fault prediction model is best suitable for projects with faulty classes less than the threshold value depending on fault identification efficiency (low - 48.89%, median- 39.26%, and high - 27.86%).

