Search Results

Now showing 1 - 2 of 2
  • Book Part
    Citation - Scopus: 1
    Design of Recycled Aluminium (AA7075)-Based Composites Reinforced with Nano Filler NiAl Intermetallic and Nano Niobium Powder Produced with Vacuum Arc Melting for Aeronautical Applications
    (CRC Press, 2023) Kasar,C.; Aslan,O.; Gatamorta,F.; Miskioglu,I.; Bayraktar,E.
    In the frame of the common research project, the mechanical properties of recycled gas atomized scrap aluminium (AA 7075)-based composites reinforced with nano filler NiAl intermetallic and niobium (Nb) elements have been evaluated. Firstly, the mixture was homogenized by means of a ball milling process for 4 hours. After cold compaction of the compositions, the final specimens have been produced with “vacuum arc melting” for aeronautical applications. Static and dynamic compression tests have been conducted. Additional tensile tests have also been carried out. Experimental results were compared with a finite element method. The interface and microstructure of these composites have also been evaluated by a scanning electron microscopy. © 2024 selection and editorial matter, N. M. Nurazzi, E. Bayraktar, M. N. F. Norrrahim, H. A. Aisyah, N. Abdullah, and M. R. M. Asyraf; individual chapters, the contributors.
  • Book Part
    Design of Recycled Aluminium (aa 7075+aa1050 Fine Chips)-Based Composites Reinforced With Nano-Sic Whiskers, Fine Carbon Fiber for Aeronautical Applications
    (CRC Press, 2023) Aslan,O.; Klinkova,O.; Katundi,D.; Miskioglu,I.; Bayraktar,E.
    In the frame of the research project that is going on, the mechanical properties of recycled gas atomized scrap aluminium (AA7075) based hybrid composites reinforced with nano SiC filler (whisker)+ Graphene Nano plateless (GNP) and fine carbon Fibers elements have been evaluated. Firstly, the mixture was homogenized by means of ball milling process during 4 hours. After hot compaction at 200°C compaction of the compositions the final specimens have been produced with the novel combined method called “SINTER+FORGING” at 650°C followed by relaxation treatment at 200°C during the 2 hours. This type of hybrid composite is used for aeronautical applications. Static and dynamic-Time dependent compression tests have been conducted. Interface and microstructure of these composites have also been evaluated by Scanning Electron Microscope (SEM). © 2024 selection and editorial matter, N. M. Nurazzi, E. Bayraktar, M. N. F. Norrrahim, H. A. Aisyah, N. Abdullah, and M. R. M. Asyraf; individual chapters, the contributors.