Search Results

Now showing 1 - 2 of 2
  • Review
    Citation - WoS: 224
    Citation - Scopus: 309
    Analysing Global Food Waste Problem: Pinpointing the Facts and Estimating the Energy Content
    (de Gruyter Open Ltd, 2013) Melikoglu, Mehmet; Lin, Carol Sze Ki; Webb, Colin
    Food waste is a global problem. Each year food worth billions of dollars is wasted by the developed economies of the world. When food is wasted, the problem does not end at that point. More than 95% of the food waste ends at landfill sites, where converted into methane, carbon dioxide and other greenhouse gasses by anaerobic digestion. The impact of food waste to climate change is catastrophic. Food waste problem tends to increase in next 25 years due to economic and population growth mainly in Asian countries. In addition, when food wastes buried at landfill sites their energy content is lost. Although food waste is a huge problem, its global size and extent has recently become a hot topic in the academic community. This paper summarises the size of the global food waste problem together with the estimation of the amount of energy lost when food wastes dumped at landfill sites. Calculations in this study also revealed that energy lost at landfill sites equals to 43% of the delivered energy used for the preparation of foods in the US, 37% of the hydroelectric power generation of Japan, and more than 100% of the current annual renewable energy demand of UK industries.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 16
    Bioethanol Production and Potential of Turkey
    (Gazi Univ, Fac Engineering Architecture, 2011) Melikoglu, Mehmet; Albostan, Ayhan; Energy Systems Engineering
    The ever increasing demand in global energy consumption makes it inevitable for the development of new energy resources. Turkey imports nearly all of its petroleum and this causes major economical problems. In Turkey, a major cereal producer, production of energy crops will decrease the dependence of petroleum and greenhouse gas emissions. In this context, bioethanol production in Turkey becomes a major alternative to petroleum. According to the results find in this study, with the current agricultural output, none of the crops can be adequate for bioethanol production even 100% of crop harvests were utilized. However, with 4% and 7% of current wheat harvest bioethanol required for the production of E5 and E10 can be achieved. In addition, by utilizing the unused land available for agriculture and planting potato, sugar beet, and wheat (each 100%), 5.8, 8.7 and 13.7 billion litres of bioethanol can be produced and this production will be more than enough to supply Turkey's current demand for gasoline.