Search Results

Now showing 1 - 10 of 20
  • Article
    Citation - WoS: 25
    Identifying Phishing Attacks in Communication Networks Using Url Consistency Features
    (inderscience Enterprises Ltd, 2020) Azeez, Nureni Ayofe; Salaudeen, Balikis Bolanle; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    Phishing is a fraudulent attempt by cybercriminals, where the target audience is addressed by a text message, phone call or e-mail, requesting classified and sensitive information after presenting himself/herself as a legitimate agent. Successful phishing attack may result into financial loss and identity theft. Identifying forensic characteristics of phishing attack can help to detect the attack and its perpetuators and as well as to enable defence against it. To shield internet users from phishing assaults, numerous anti-phishing models have been proposed. Currently employed techniques to handle these challenges are not sufficient and capable enough. We aim at identifying phishing sites in order to guard internet users from being vulnerable to any form of phishing attacks by verifying the conceptual and literal consistency between the uniform resource locator (URL) and the web content. The implementation of the proposed PhishDetect method achieves an accuracy of 99.1%; indicating that it is effective in detecting various forms of phishing attacks.
  • Article
    Citation - WoS: 113
    Citation - Scopus: 163
    Relationship Between Convenience, Perceived Value, and Repurchase Intention in Online Shopping in Vietnam
    (Mdpi, 2018) Quoc Trung Pham; Xuan Phuc Tran; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas
    Electronic commerce (e-commerce) is an increasingly popular trend in modern economy concomitant with the development of the Internet. E-commerce has developed considerably, making Vietnam one of the fastest growing markets in the world. However, its growth rate has not matched its potential, leading to the question how online retailers could improve their practices and thus contribute to the sustainable development of emerging markets such as Vietnam. Therefore, with the goal of providing online retailers with many methods to improve their online shopping service, this study examined the direct and indirect influence of the dimensions of online shopping convenience on repurchase intention through customer-perceived value. A survey of 230 Vietnamese customers was conducted to test the theoretical model. A structural equation model was used for data analysis. The results determined that the five dimensions of online shopping convenience are: access, search, evaluation, transaction, and possession/post-purchase convenience. All dimensions have a direct impact on perceived value and repurchase intention. The results also show the important role of perceived value when a factor both directly influences repurchase intention and mediates the relationship between convenience and repurchase intention.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 35
    Distributed Centrality Analysis of Social Network Data Using Mapreduce
    (Mdpi, 2019) Behera, Ranjan Kumar; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    Analyzing the structure of a social network helps in gaining insights into interactions and relationships among users while revealing the patterns of their online behavior. Network centrality is a metric of importance of a network node in a network, which allows revealing the structural patterns and morphology of networks. We propose a distributed computing approach for the calculation of network centrality value for each user using the MapReduce approach in the Hadoop platform, which allows faster and more efficient computation as compared to the conventional implementation. A distributed approach is scalable and helps in efficient computations of large-scale datasets, such as social network data. The proposed approach improves the calculation performance of degree centrality by 39.8%, closeness centrality by 40.7% and eigenvalue centrality by 41.1% using a Twitter dataset.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 39
    Network Intrusion Detection With a Hashing Based Apriori Algorithm Using Hadoop Mapreduce
    (Mdpi, 2019) Azeez, Nureni Ayofe; Ayemobola, Tolulope Jide; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas
    Ubiquitous nature of Internet services across the globe has undoubtedly expanded the strategies and operational mode being used by cybercriminals to perpetrate their unlawful activities through intrusion on various networks. Network intrusion has led to many global financial loses and privacy problems for Internet users across the globe. In order to safeguard the network and to prevent Internet users from being the regular victims of cyber-criminal activities, new solutions are needed. This research proposes solution for intrusion detection by using the improved hashing-based Apriori algorithm implemented on Hadoop MapReduce framework; capable of using association rules in mining algorithm for identifying and detecting network intrusions. We used the KDD dataset to evaluate the effectiveness and reliability of the solution. Our results obtained show that this approach provides a reliable and effective means of detecting network intrusion.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 24
    Fusion of Smartphone Sensor Data for Classification of Daily User Activities
    (Springer, 2021) Sengul, Gokhan; Ozcelik, Erol; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN.
  • Article
    Citation - WoS: 23
    Citation - Scopus: 26
    Reconstruction of 3d Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3d Models From Shapenetcore Dataset
    (Mdpi, 2019) Kulikajevas, Audrius; Maskeliunas, Rytis; Damasevicius, Robertas; Misra, Sanjay
    Depth-based reconstruction of three-dimensional (3D) shape of objects is one of core problems in computer vision with a lot of commercial applications. However, the 3D scanning for point cloud-based video streaming is expensive and is generally unattainable to an average user due to required setup of multiple depth sensors. We propose a novel hybrid modular artificial neural network (ANN) architecture, which can reconstruct smooth polygonal meshes from a single depth frame, using a priori knowledge. The architecture of neural network consists of separate nodes for recognition of object type and reconstruction thus allowing for easy retraining and extension for new object types. We performed recognition of nine real-world objects using the neural network trained on the ShapeNetCore model dataset. The results evaluated quantitatively using the Intersection-over-Union (IoU), Completeness, Correctness and Quality metrics, and qualitative evaluation by visual inspection demonstrate the robustness of the proposed architecture with respect to different viewing angles and illumination conditions.
  • Article
    Citation - WoS: 62
    Citation - Scopus: 78
    Hybrid Microgrid for Microfinance Institutions in Rural Areas - a Field Demonstration in West Africa
    (Elsevier, 2019) Ayodele, Esan; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    We present a hybrid energy microgrid optimization model for a microbank in a remote rural residential area. The model is based on the use of renewable (wind turbines & solar photovoltaic (PV)) and conventional (gasoline generators) energy sources and battery storage systems. We conducted a detailed assessment of a typical microbank's load, residential loads and energy resources in a village called Ajasse-Ipo in Kwara State, Nigeria. We performed the modeling of a hybrid microgrid system, followed by an economic analysis and sensitivity analysis to optimize the hybrid system design. We performed simulations based on the energy resources available (solar PV, wind, gasoline generator & battery energy storage system) to satisfy the energy demands of the microbank, while the excess energy was supplied to meet the demand of the community loads, i.e. water pumping machine and rural home lighting. The results obtained showed that the hybrid system comprising the solar PV/battery/diesel was most techno-economically viable with a Net Present Cost (NPC) and Cost of Energy (COE) of $468,914 and 0.667$/kWh, respectively. Comparing these results with those obtained using analytical methods, the solar PV, battery and converter sizes obtained were slightly higher than the optimal system configurations as produced by HOMER. The proposed hybrid energy system also allowed to achieve almost 50% reductions in CO2, CO, unburned hydrocarbons, particulate matter, SO2 & NO2. The system can be applicable for other rural regions in the developing countries with similar environmental conditions.
  • Article
    Citation - WoS: 23
    Citation - Scopus: 30
    Secure Ear Biometrics Using Circular Kernel Principal Component Analysis, Chebyshev Transform Hashing and Bose-Chaudhuri Error-Correcting Codes
    (Springer London Ltd, 2020) Olanrewaju, L.; Oyebiyi, Oyediran; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas
    Ear biometrics has generated an increased interest in the domain of biometric identification systems due to its robustness and covert acquisition potential. The external structure of the human ear has a bilateral symmetry structure. Here, we analyse ear biometrics based on ear symmetry features. We apply iterative closest point and kernel principal component analysis with circular kernel for feature extraction while using a circular kernel function, combined with empirical mode decomposition into intrinsic mode functions perceptual hashing using and fast Chebyshev transform, and a secure authentication approach that exploits the discrete logarithm problem and Bose-Chaudhuri-Hocquenghem error-correcting codes to generate 128-bit crypto keys. We evaluate the proposed ear biometric cryptosecurity system using our data set of ear images acquired from 103 persons. Our results show that the ear biometric-based authentication achieved an equal error rate of 0.13 and true positive rate TPR of 0.85.
  • Article
    Citation - WoS: 31
    Citation - Scopus: 36
    Large Scale Community Detection Using a Small World Model
    (Mdpi, 2017) Behera, Ranjan Kumar; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 24
    Gender Detection Using 3d Anthropometric Measurements by Kinect
    (Polska Akad Nauk, Polish Acad Sciences, 2018) Camalan, Seda; Sengul, Gokhan; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas
    Automatic gender detection is a process of determining the gender of a human according to the characteristic properties that represent the masculine and feminine attributes of a subject. Automatic gender detection is used in many areas such as customer behaviour analysis, robust security system construction, resource management, human-computer interaction, video games, mobile applications, neuro-marketing etc., in which manual gender detection may be not feasible. In this study, we have developed a fully automatic system that uses the 3D anthropometric measurements of human subjects for gender detection. A Kinect 3D camera was used to recognize the human posture, and body metrics are used as features for classification. To classify the gender, KNN, SVM classifiers and Neural Network were used with the parameters. A unique dataset gathered from 29 female and 31 male (a total of 60 people) participants was used in the experiment and the Leave One Out method was used as the cross-validation approach. The maximum accuracy achieved is 96.77% for SVM with an MLP kernel function.