4 results
Search Results
Now showing 1 - 4 of 4
Doctoral Thesis Düşük Çözünürlüklü Görüntülerde Araç Tespiti ve Siniflandirmasi için Birden Fazla Aşamali Modüler Bir Yöntem(2025) Maiga, Bamoye; Dalveren, YaserAkıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.Doctoral Thesis Düşük Çözünürlülüklü Görüntülerde Araç Tespiti ve Sınıflandırması İçin Birden Fazla Aşamalı Modüller Bir Yöntem(2025) Maiga, Bamoye; Dalveren, YaserAkıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.Article Citation - WoS: 8Citation - Scopus: 15Distributed denial-of-service attack mitigation in network functions virtualization-based 5G networks using management and orchestration(Wiley, 2021) Koksal, Sarp; Dalveren, Yaser; Maiga, Bamoye; Kara, AliThe fifth generation (5G) technology is expected to allow connectivity to billions of devices, known as Internet of Things (IoT). However, IoT devices will inevitably be the main target of various cyberattack types. The most common one is known as distributed denial-of-service (DDoS) attack. In order to mitigate such attacks, network functions virtualization (NFV) has a great potential to provide the benefit of elasticity and low-cost solutions for protecting 5G networks. In this context, this study proposes a new mechanism developed to mitigate DDoS attacks in 5G NFV networks. The proposed mechanism utilizes intrusion prevention system's (IPS) virtual machines (VMs) to intercept the queries. Based on the volume of DDoS traffic, IPS's VMs are dynamically deployed by means of management and orchestration (MANO) in order to balance the load. To evaluate the effectiveness of the mechanism, experiments are conducted in a real 5G NFV environment built by using 5G NFV environment tools. To our best knowledge, this is the first time that NFV-based mechanism is experimentally tested in a real 5G NFV environment for mitigating DDoS attacks in 5G networks. The experimental results verify that the proposed mechanism can mitigate DDoS attacks effectively.Doctoral Thesis Düşük Çözünürlüklü Görüntülerde Araç Tespiti ve Sınıflandırması İçin Birden Fazla Aşamalı Modüler Bir Yöntem(2025) Maiga, Bamoye; Dalveren, YaserAkıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.

