2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 11Citation - Scopus: 15Biomechanical Comparison of Sinus Floor Elevation and Alternative Treatment Methods for Dental Implant Placement(Taylor & Francis Ltd, 2017) Kucukkurt, Sercan; Alpaslan, Goekhan; Kurt, AhmetObjective: In this study, we compared the success of sinus lifting and alternative treatment methods in applying dental implants in cases lacking adequate bone due to pneumatization of the maxillary sinus. Methods: In a computer environment, 3D models were created using computerized tomography data from a patient. Additionally, implants and abutments were scanned at the macroscopic level, and the resulting images were transferred to the 3D models. Five different models were examined: a control model, lateral sinus lifting (LSL), short dental implant placement (SIP), tilted implant placement (TIP) and distal prosthetic cantilever (DC) use. Vertical and oblique forces were applied in each model. The compression, tension and von Mises stresses in each model were analyzed by implementing a finite element analysis method. Results: In our study, the LSL method was observed to be the closest to the control model. The TIP model showed high stress values under conditions of oblique forces but showed successful results under conditions of vertical forces, and the opposite results were observed in the SIP model. The DC model provided the least successful results among all models. Conclusions: Based on the results of this study, the LSL method should be the first choice among treatment options. Considering its successful results under conditions of oblique forces, the SIP method may be preferable to the TIP method. In contrast, every effort should be made to avoid the use of DCs.Article Citation - WoS: 8Citation - Scopus: 7Does the Angulation of the Mandibular Third Molar Influence the Fragility of the Mandibular Angle After Trauma To the Mandibular Body? a Three-Dimensional Finite-Element Study(Taylor & Francis Ltd, 2018) Kilinc, Yeliz; Zor, Zeynep Fatma; Tumer, Mehmet Kemal; Erkmen, Erkan; Kurt, AhmetThe relationship between mandibular third molar (M3) angulation and mandibular angle fragility is not well established. The aim of this study was to evaluate the impact of M3 angulation on the mandibular angle fragility when submitted to a trauma to the mandibular body region. A three-dimensional (3D) mandibular model without M3 (Model 0) was obtained by means of finite-element analysis (FEA). Four models were generated from the initial model, representing distoangular (Model D), horizontal (Model H), mesioangular (Model M) and vertical (Model V) angulations. A blunt trauma with a magnitude of 2000 N was applied perpendicularly to the sagittal plane in the mandibular body. Maximum principal stress (P-max) (tensile stress) values were calculated in the bone. The lowest P-max stress values were noted in Model 0. When the M3 was present extra stress fields were found around marginal bone of second molar and M3. Comparative analysis of the models with M3 revealed that the highest level of stress was found in Model V, whereas Model D showed the lowest stress values. The angulation of M3 affects the stress levels in the mandibular angle and has an impact on mandibular fragility. The mandibular angle becomes more fragile in case of vertical impaction when submitted to a trauma to the mandibular body region.

