Search Results

Now showing 1 - 2 of 2
  • Article
    Effectiveness of Boric Acid in Sepsis in Rats With Cecal Perforation
    (Springer Nature, 2025) Kurtipek, Ali Can; Dursun, Ali Dogan; Yigman, Zeynep; Ozdemir, Cagri; Kucuk, Aysegul; Gonullu, Ugur; Arslan, Mustafa
    Introduction and AimSepsis is a systemic inflammatory response that develops in the host against microorganisms, which results in end-organ damage. Boric acid (BA) has been shown to have immune modulatory effects in vitro and in animal studies. The aim of the study is to investigate the effects of high dose BA on lung and kidney tissues in rats with sepsis induced by the CLP method.Method28 rats were randomly divided into four groups: Group C (control group), Group BA, Group CLP (cecal ligation and puncture), and Group CLP + BA. Cecum was ligated below the ileocecal valve and punctured. BA was administered to the treatment groups at an intraperitoneal dose of 200 mg/kg, and at the end of 24 h, lung and kidney tissue samples were collected and evaluated for biochemical and histopathological parameters.ResultsHistopathologically, in kidney tissue, CLP + BA group showed significantly less peritubular capillary dilatation and brush border loss in the proximal tubule epithelium compared to the CLP group. In lung tissue, CLP + BA group had significantly less alveolar wall thickening compared to the CLP group. Biochemical analyses indicated that BA administration reduced oxidative stress in both renal and lung tissues.ConclusionWe found that intraperitoneal administration of high dose boric acid partially ameliorated the tissue damage in rats subjected to CLP induced sepsis. Further studies are needed regarding the dosage and application at different time points.
  • Article
    Organ-Protective Effects of Fullerenol and Desflurane in a Rat Model of Ischemia–Reperfusion Injury
    (Nature Portfolio, 2025) Kip, Gulay; Koksal, Zeynep; Yigman, Zeynep; Kucuk, Aysegul; Arslan, Mustafa; Akarca Dizakar, Saadet Ozen; Sivgin, Volkan
    To investigate the protective effects of fullerenol applied before ischemia induction and desflurane anesthesia applied during ischemia-reperfusion (IR) induction in the lungs and kidneys of a lower-extremity IR injury rat model. After receiving ethical approval, we randomly divided 30 rats into five groups: sham (S), IR, IR with 100 mg/kg fullerenol (IR-FUL), IR with 6.7% desflurane (IR-DES), IR with 100 mg/kg fullerenol and 6.7% desflurane (IR-FUL-DES). Fullerenol was administered 30 min before the IR procedure in the IR-FUL and IR-FUL-DES groups, and desflurane was administered during the IR procedure in the IR-DES and IR-FUL-DES groups. During the procedure, an atraumatic microvascular clamp was placed in the aorta for 120 min. The clamp was then removed to achieve reperfusion for 120 min. Finally, at the end of reperfusion, we evaluated the extracted lung and kidney tissue samples and assessed them biochemically and histopathologically. The lung damage scores of the IR-FUL, IR-DES, and IR-FUL-DES groups were significantly lower than those of the IR group (p < .0001, p = .002, and p < .0001, respectively). The renal tubule injury scores of the IR, IR-FUL, IR-DES, and IR-FUL-DES groups were significantly higher than those of the S group (p < .0001). By contrast, the renal tubule injury scores of the IR-FUL and IR-FUL-DES groups were significantly lower than those of the IR group (p < .0001 and p = .001, respectively). Moreover, kidney intercellular adhesion molecule 1 (ICAM1) expression was significantly lower in all the treatment groups, particularly the IR-FUL group, than in the IR group, and lung ICAM1 expression was significantly lower in the IR-FUL and IR-FUL-DES groups than in the other treatment groups. In the lung and kidney tissues, thiobarbituric acid reactive substance levels, catalase activity, glutathione-S-transferase activity, and arylesterase activity were relatively high in the treatment groups. The application of fullerenol before and after desflurane anesthesia during IR has protective effects on rat lungs and kidneys. In particular, histopathology confirmed that the application of fullerenol 30 min before IR induction and desflurane anesthesia during IR induction reduced oxidative stress and alleviated IR-related damage in the lungs and kidneys. These findings may have important translational relevance, suggesting potential perioperative strategies for protecting organs from ischemia-reperfusion injury in clinical settings.