3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 16Citation - Scopus: 19A Pumpless Monolayer Microfluidic Device Based on Mesenchymal Stem Cell-Conditioned Medium Promotes Neonatal Mouse in Vitro Spermatogenesis(Bmc, 2023) Onen, Selin; Atik, Ali Can; Gizer, Merve; Kose, Sevil; Yaman, Onder; Kulah, Haluk; Korkusuz, PetekBackgroundChildhood cancer treatment-induced gonadotoxicity causes permanent infertility/sub-infertility in nearly half of males. The current clinical and experimental approaches are limited to cryopreservation of prepubertal testicular strips and in vitro spermatogenesis which are inadequate to achieve the expanded spermatogonial stem/progenitor cells and spermatogenesis in vitro. Recently, we reported the supportive effect of bone marrow-derived mesenchymal cell co-culture which is inadequate after 14 days of culture in static conditions in prepubertal mouse testis due to lack of microvascular flow and diffusion. Therefore, we generated a novel, pumpless, single polydimethylsiloxane-layered testis-on-chip platform providing a continuous and stabilized microfluidic flow and real-time cellular paracrine contribution of allogeneic bone marrow-derived mesenchymal stem cells.MethodsWe aimed to evaluate the efficacy of this new setup in terms of self-renewal of stem/progenitor cells, spermatogenesis and structural and functional maturation of seminiferous tubules in vitro by measuring the number of undifferentiated and differentiating spermatogonia, spermatocytes, spermatids and tubular growth by histochemical, immunohistochemical, flow cytometric and chromatographic techniques.ResultsBone marrow-derived mesenchymal stem cell-based testis-on-chip platform supported the maintenance of SALL4(+) and PLZF(+) spermatogonial stem/progenitor cells, for 42 days. The new setup improved in vitro spermatogenesis in terms of c-Kit(+) differentiating spermatogonia, VASA(+) total germ cells, the meiotic cells including spermatocytes and spermatids and testicular maturation by increasing testosterone concentration and improved tubular growth for 42 days in comparison with hanging drop and non-mesenchymal stem cell control.ConclusionsFuture fertility preservation for male pediatric cancer survivors depends on the protection/expansion of spermatogonial stem/progenitor cell pool and induction of in vitro spermatogenesis. Our findings demonstrate that a novel bone marrow-derived mesenchymal stem cell-based microfluidic testis-on-chip device supporting the maintenance of stem cells and spermatogenesis in prepubertal mice in vitro. This new, cell therapy-based microfluidic platform may contribute to a safe, precision-based cell and tissue banking protocols for prepubertal fertility restoration in future.Book Part Citation - WoS: 18Citation - Scopus: 23Stem Cell and Advanced Nano Bioceramic Interactions(Springer-verlag Singapore Pte Ltd, 2018) Kose, Sevil; Kankilic, Berna; Gizer, Merve; Dede, Eda Ciftci; Bayramli, Erdal; Korkusuz, Petek; Korkusuz, FezaBioceramics are type of biomaterials generally used for orthopaedic applications due to their similar structure with bone. Especially regarding to their osteoinductivity and osteoconductivity, they are used as biodegradable scaffolds for bone regeneration along with mesenchymal stem cells. Since chemical properties of bioceramics are important for regeneration of tissue, physical properties are also important for cell proliferation. In this respect, several different manufacturing methods are used for manufacturing nano scale bioceramics. These nano scale bioceramics are used for regeneration of bone and cartilage both alone or with other types of biomaterials. They can also act as carrier for the delivery of drugs in musculoskeletal infections without causing any systemic toxicity.Article Citation - WoS: 2Citation - Scopus: 2Effect of Mesenchymal Stem Cells Therapy in Experimental Kaolin Induced Syringomyelia Model(Edizioni Minerva Medica, 2022) Bal, Ercan; Hanalioglu, Sahin; Kopru, Cagla Z.; Kose, Sevil; Basak, Ahmet T.; Pehlivan, Sibel B.; Bozkurt, GokhanBACKGROUND: Syringomyelia is a pathological cavitation of the spinal cord. In this study, we examined whether a syrinx cavity would limit itself with axonal regeneration and stem cell activity in the cavity, and we evaluated subjects on a functional basis. METHODS: Groups were designated as kaolin, trauma, kaolin-trauma, and saline groups. Also divided out of the syringomyelia treated groups were those given human mesenchymal stem cells (hMSCs). All groups were evaluated with immunohistochemistry, electron microscopy, confocal microscopy and functionally. RESULTS: The kaolin-trauma group had a significant correction of BBB score with hMSCs therapy. The syrinx cavity measurements showed significant improvement in groups treated with hMSCs. The tissue surrounding the syrinx cavity, however, appeared to be better organized in groups treated with hMSCs. The process of repair and regeneration of damaged axons in the lesion were more improved in groups treated with hMSCs. Using confocal microscopy, fluorescence of hMSCs was observed in the central canal, in the ependymal tissue, and around the lesion. CONCLUSIONS: It was concluded that axonal repair accelerated in groups receiving stem cells, and thus, stem cells may be effective in recovery of neural tissue and myelin damage in syringomyelia.

