Search Results

Now showing 1 - 1 of 1
  • Article
    Relationship Between Crustal Magnetic Anomalies and Earthquake Activity in Malatya and Surrounding Region After the 2023 Kahramanmaraş Earthquakes, Southeastern Türkiye
    (Springer Int Publ Ag, 2026) Bilim, Funda; Kosaroglu, Sinan; Aydemir, Attila
    The East Anatolian Fault Zone (EAFZ) is one of the most critical and active tectonic elements in T & uuml;rkiye, and there are a significant number of high-magnitude earthquakes along with the EAFZ, mentioned in the historical documents and recorded in the instrumental periods in southeastern Anatolia. The latest devastating tectonic activity occurred on February 6, 2023 (Mw = 7.7), followed by another high-magnitude earthquake in the same day (Mw = 7.6) on this fault zone. More than 15,000 aftershocks (some of them are Mw >= 4.0) have been recorded since then. The EAFZ is composed of several sub-fault zones and their segments with different elongations. Although the majority of these segments indicate ruptures during the main shock and aftershocks, some of them (including the Malatya Fault) are still aseismic, including great potential to trigger high-magnitude earthquakes. In this study, we interpreted the magnetic data and the epicenter distributions of earthquakes to correlate the tectonic structures and active fault zones. The fault indicators (with maxspots) based on the different types of derivative transformations provided good correlations between the faults and magnetic discontinuities because almost all fault zones in the study area have been filled by the magmatic intrusions to create magnetic anomalies. The maxspots are also another practical tool to determine the possible segments of faults and/or exact locations of undefined magmatic intrusions. It is possible to claim that the faults have provided conduits for the intrusion of the causative bodies while triggering the earthquakes in this critical area. The earthquakes are generally recorded along the southern fault segments. As a result of these methods and correlations, we determined the exact location and the length of the Malatya Fault (approximately 220 km), which is represented with the low-magnitude earthquakes.