Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 25
    Citation - Scopus: 26
    Production and Properties of Tooth-Colored Yttria Stabilized Zirconia Ceramics for Dental Applications
    (Elsevier Sci Ltd, 2018) Kaplan, Melis; Park, Jongee; Kim, Soo Young; Ozturk, Abdullah
    Dense zirconia stabilized with 3 mol% yttria ceramics were produced in disc shape by first cold isostatically pressing at 100 MPa and then sintering at 1450 degrees C at ambient laboratory conditions. Coloring was accomplished by immersion the discs in NiCl2, MoCl3, and NiCl2 + MoCl3 solutions for 5, 30, and 60 s. Different concentrations (0.1, 0.25, and 0.5 wt%) were applied to get the color of natural tooth. The density, color, microhardness, fracture toughness, compressive strength, and wear rate of the discs were measured to evaluate the suitability of the colored discs for dental applications. Color assessments were made by measuring CIE Lab L*, a*, b, and Delta E* values. Low temperature degradation of the samples was evaluated by aging sensitivity tests in autoclave for 2, 4, and 6 h. Results have shown that color produced depends on the kind and concentration of the colorant solution while time of immersion has no significant effect on coloring process. Coloring solutions containing 0.1 and 0.25 wt% MoCl3 provided clinically acceptable color with the Delta E* value ranging from 5.16 to 6.42 for dental applications.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 25
    Facile synthesis of CsPbBr3/PbSe composite clusters
    (Taylor & Francis Ltd, 2018) Thang Phan Nguyen; Ozturk, Abdullah; Park, Jongee; Sohn, Woonbae; Tae Hyung Lee; Jang, Ho Won; Kim, Soo Young
    In this work, CsPbBr3 and PbSe nanocomposites were synthesized to protect perovskite material from self-enlargement during reaction. UV absorption and photoluminescence (PL) spectra indicate that the addition of Se into CsPbBr3 quantum dots modified the electronic structure of CsPbBr3, increasing the band gap from 2.38 to 2.48 eV as the Cs:Se ratio increased to 1:3. Thus, the emission color of CsPbBr3 perovskite quantum dots was modified from green to blue by increasing the Se ratio in composites. According to X-ray diffraction patterns, the structure of CsPbBr3 quantum dots changed from cubic to orthorhombic due to the introduction of PbSe at the surface. Transmission electron microscopy and X-ray photoemission spectroscopy confirmed that the atomic distribution in CsPbBr3/PbSe composite clusters is uniform and the composite materials were well formed. The PL intensity of a CsPbBr3/PbSe sample with a 1:1 Cs: Se ratio maintained 50% of its initial intensity after keeping the sample for 81 h in air, while the PL intensity of CsPbBr3 reduced to 20% of its initial intensity. Therefore, it is considered that low amounts of Se could improve the stability of CsPbBr3 quantum dots.