Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    Gd and Tb Doping Effects on the Physical Properties of Nd2sn2<
    (Elsevier Sci Ltd, 2018) Saleh, Adli A.; Hamamera, Hanan Z.; Khanfar, Hazem K.; Qasrawi, A. F.; Yumusak, G.
    In the current study, we report the light doping effects of the gadolinium and the terbium on the structural, morphological, optical and electrical properties of Nd2Sn2O7 pyrochlore ceramics. The pyrochlore which is prepared by the conventional solid state reaction technique is analyzed by means of scanning electron microscopy, energy dispersive X-ray analyzer, X-ray diffraction, ultraviolet- visible light spectrophotometry and temperature dependent current -voltage characteristics techniques. It is found that even though the doping content of both metals is low (2%), they significantly alter the physical properties of the pyrochlore. Particularly, it is observed that, these two doping agents increases the lattice parameter and strain and reduces the crystallite size and dislocation density. Optically, the effect of Gd doping on shrinking the energy band gap value of the Nd(2)Sn(2)O(7 )pyrochlore ceramic is more pronounced than that of Tb. On the other hand, the electrical investigations have shown that while the Gd make the pyrochlore exhibit p-type conductivity through forming shallow acceptor levels, the Tb forces n-type conductivity by forming deep donor levels below the conduction band edge. Such acceptor and donor impurity levels increases the electrical conductivity of the Nd(2)Sn(2)O(7 )pyrochlore ceramics by 390 and 58 times, respectively.
  • Article
    Citation - WoS: 26
    Citation - Scopus: 27
    Impact of Yb, In, Ag and Au Thin Film Substrates on the Crystalline Nature, Schottky Barrier Formation and Microwave Trapping Properties of Bi2o3< Films
    (Elsevier Sci Ltd, 2017) Khusayfan, Najla M.; Qasrawi, A. F.; Khanfar, Hazem K.
    The effect of the Yb, In, Ag and Au thin film metal substrates on the structural and electrical properties of Bi2O3 thin films are investigated by means of X-ray diffraction, impedance spectroscopy an current-voltage characteristic techniques. The Bi2O3 films are observed to exhibit a crystallization nature depending on the crystal structure of the substrate. Particularly, when the metal substrate is facing centered cubic, the Bi2O3 prefers the gamma-phase of body centered cubic crystallization for the (Yb, Ag and Au)/Bi2O3 interfaces. Whereas when a tetragonal substrate (indium) is used, the tetragonal beta-Bi2O3 single phase is preferred. All structural parameters presented by the lattice constant, degree of orientation, dislocation density, micro-strain and grain size are observed to strongly depend on the crystal type. In addition, the evaluation of the Schottky barrier formation at the (Yb, In, Ag, Au)/Bi2O3/Au interfaces by the current-voltage characteristics, revealed that the (In, Au)/Bi2O3/Au interface exhibit ohmic nature of contact and the (Yb,Ag)/Bi2O3/Au are of Schottky type, the rectification ratio for the Yb/Bi2O3/Au interface reaches a value of 10(5) indicating the applicability of these interfaces in CMOS digital logic devices. Moreover, the impedance spectroscopy analysis revealed that the ohmic interfaces exhibit a negative capacitance effect. The In/beta-Bi2O3/Au and Yb/.-Bi2O3/Au interfaces are performing as microwave traps with wave absorption percentage of 62% and 92% at frequencies of 193 and 1200 MHz, respectively. The features of the devices are promising as they indicate the applicability as microwave resonator and fast electronic switches.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 7
    Negative Capacitance Effect in Ag/-in2< Dual Band Stop Filters
    (Springer, 2019) Khanfar, Hazem K.; Qasrawi, A. F.; Shehada, Sufyan R.
    In the current study, a 1.5m thick three channel microwave band filter is designed and characterized. The thin film device which was constructed from the indium selenide, cadmium sulfide and cadmium selenide stacked dielectric materials sandwiched between silver and carbon films is studied by means of x-ray diffraction, energy dispersive x-ray analysis and impedance spectroscopy techniques. It was observed that the Ag thin film substrate induced the formation of the hexagonal -In2Se3 phase of indium selenide. The x-ray analysis has also shown that the deposition of hexagonal CdS over Ag/-In2Se3 and that of hexagonal CdSe over -In2Se3/CdS under vacuum pressure of 10(-8) bar is of a highly strained and mismatched physical nature. The impedance spectroscopy analysis in the frequency domain of 0.10-1.80GHz has shown that; while the Ag/-In2Se3/C channel exhibit negative capacitance (NC) effects in the frequency domain of 0.10-1.40GHz, the Ag/-In2Se3/CdS/C and the Ag/-In2Se3/CdS/CdSe/C channels displayed a NC feature in the domains of 1.24-1.40GHz and 1.10-1.56GHz, respectively. The fitting of the capacitance spectra in accordance with the modified Ershov model allowed determining the NC and band filtering parameters. It was also observed that, although the Ag/-In2Se3/C channel behaves as a high frequency low pass filter, the second and third channels displayed band stop filter features with notch frequencies of 1.38GHz and 1.49GHz, respectively. The features of the device nominate it for use as a parasitic capacitance canceller and as a three channels microwave filter.