Search Results

Now showing 1 - 2 of 2
  • Review
    Citation - WoS: 61
    Citation - Scopus: 75
    Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route
    (Mdpi, 2019) Keskinkilic, Ender
    The treatment of laterites has been a research hotspot in extractive metallurgy over the past decades. Industrially, the pyrometallurgical treatment of laterites is mostly accomplished with a well-established method, namely, the rotary kiln-electric arc furnace (RKEF) process, which includes three main operations-calcination, prereduction, and smelting-followed by further refining for the removal of impurities from the raw ferro-nickel. As indicated in many studies of the RKEF process, the major downside of this method is its high energy consumption. Efforts have been made to lower this consumption. Furthermore, several new processes have been proposed. Among these, low-grade ferro-nickel production is regarded as the most widely and industrially used process after traditional RKEF operation. Although not widespread, other alternative processes of industrial scale have been generated since the start of the millennium. Recently, certain innovative processes have been tested either in the laboratory or at pilot-scale. In this paper, a literature review related to the smelting of laterites is made, and an emphasis on new processes and some examples of new developments in the RKEF process are presented.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 7
    Recovery of Iron From Turkish and Iranian Red Muds
    (Springer, 2022) Eray, Said; Keskinkilic, Ender; Topkaya, Yavuz A.; Geveci, Ahmet
    Turkish and Iranian red mud samples of different composition and mineralogy were processed by solid-state reduction followed by wet magnetic separation and smelting, two commonly used pyrometallurgical methods for iron recovery. The application of these two methods on the same samples allowed them to be compared thoroughly and to be examined for versatility. The results showed that it was possible to recover more than 90% of iron using both methods. However, the concentrate obtained by the first method contained a significant amount of undesirable oxides. Thus, large proportions (similar to 30%) of valuable elements that are planned to be recovered by hydrometallurgical methods were removed together with the iron. The smelting method, on the other hand, made it possible to recover the iron with high efficiency and as a marketable purity Fe-C alloy. The metal obtained by smelting contained 96% iron, 2% carbon, and a small amount of impurities like Si, Ti, and Na.