4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 3Citation - Scopus: 3Correlations Between Hardness, Electrostatic Interactions, and Thermodynamic Parameters in the Decomposition Reactions of 3-Buten 3-Methoxy and Ethoxyethene(Springer/plenum Publishers, 2015) Hasanzadeh, Neda; Nori-Shargh, Davood; Kayi, Hakan; Javid, Nargess RezaeiDecomposition of the three isomeric compounds, 3-buten-1-ol (1), 3-methoxy-1-propene (2), and ethoxyethene (3), at two different (300 and 550 K) temperatures has been investigated by means of ab initio molecular orbital theory (MP2/6-311+G**//B3LYP/6-311+G**), hybrid-density functional theory (B3LYP/6-311+G**), the complete basis set, nuclear magnetic resonance analysis, and the electrostatic model associated with the dipole-dipole interactions. All three levels of theory showed that the calculated Gibbs free energy differences between the transition and ground state structures (Delta G (not equal)) increase from compound 1 to compound 3. The variations of the calculated Delta G (not equal) values can not be justified by the decrease of the calculated global hardness (eta) differences between the ground and transition states structures (i.e., Delta[eta(GS)-eta(TS)]). Based on the synchronicity indices, the transition state structures of compounds 1-3 involve synchronous aromatic transition structures, but there is no significant difference between their calculated synchronicity indices. The optimized geometries for the transition state structures of the decomposition reactions of compounds 1-3 consist in chair-like six-membered rings. The variation of the calculated activation entropy (Delta S (not equal)) values can not be justified by the decrease of Delta[eta(GS)-eta(TS)] parameter from compound 1 to compound 3. On the other hand, dipole moment differences between the ground and transition state structures [Delta(A mu (TS)-A mu (GS))] decrease from compound 1 to compound 3. Therefore, the electrostatic model associated with the dipole-dipole interactions justifies the increase of the calculated Delta G (not equal) values from compound 1 to compound 3. The correlations between Delta G (not equal), Delta[eta(GS)-eta(TS)], (Delta S (not equal)), k(T), electrostatic model, and structural parameters have been investigated.Article Citation - WoS: 4Citation - Scopus: 4Anticancer Investigation of Platinum and Copper-Based Complexes Containing Quinoxaline Ligands(Elsevier, 2022) El-Beshti, Hager Sadek; Yildizhan, Yasemin; Kayi, Hakan; Cetin, Yuksel; Adiguzel, Zelal; Gungor-Topcu, Gamze; Ozalp-Yaman, SenizThis research focuses on synthesis and anticancer activity of trans-[(dichloro)bisdipyridlquinoxalino] and [(dichloro)bisdithienylquinoxalino]copper(II)/platinum(II) compounds as prodrug candidates. The binding interaction of these compounds with calf thymus DNA (CT-DNA) and human serum albumin (HSA) of the complexes were assessed with UV titration, thermal decomposition, viscometric, and fluorometric measurements. The nature of the binding of the complexes on DNA were revealed as electrostatic interaction between the cationic metal complexes ion and the negative phosphate groups of CT-DNA upon removal of the counter ion, chloride. In addition, our complexes induced a surface contact through the hydrophobic region of protein. Antitumor activity of the complexes against human glioblastoma A172, LN229, and U87 cell lines and human lung A549, human breast MDA-231, human cervix HeLa, and human prostate PC-3 cell lines were investigated by examining cell viability, oxidative stress, apoptosis, and migration/invasion. Cytotoxicity of the complexes was evaluated by MTT test. The U87 and HeLa cells were investigated as the cancer cells most sensitive to our complexes. The exerted cytotoxic effect of dipyridlquinoxalino and dithienylquinoxalino copper(II)/platinum(II) complexes was attributed to the formation of the reactive oxygen species in vitro. It is clearly demonstrated that trans-[(dichloro)bisdithenylquinoxalino]copper (II) (Cu(dtq)) has the highest DNA degradation potential and anticancer effect among the tested complexes by leading apoptosis. Wound healing and invasion analysis results also supported the anticancer activity of Cu(dtq). (C) 2021 Elsevier B.V. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 11Capture of Carbonyl Sulfide by Organic Liquid Mixtures: a Systematic Dft Investigation(Amer Chemical Soc, 2021) Abduesslam, Mahmoud; Kayi, HakanPotential use of organic liquid mixtures consisting of amines, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU), 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG), and linear alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol) in the capture of carbonyl sulfide is comprehensively and systematically investigated by density functional theory calculations at the omega B97X-D3/6-311+ +G(d,p) level of theory. In total, eighteen different systems as a combination of amines and alcohols are taken into account. A modified single-step, termolecular reaction mechanism among amine, alcohol, and carbonyl sulfide is considered. The findings from structural, thermodynamic, and kinetic analyses indicated that suggested reaction mechanisms for the eighteen different systems being studied are thermodynamically feasible, and the organic liquid mixture of BTMG with methanol yields the lowest energy barrier and the highest reaction rate constant in the capture of carbonyl sulfide.Article Citation - WoS: 4Citation - Scopus: 4Radicalic Cleavage Pathway and Dna Docking Studies of Novel Chemotherapic Platinum Agent of 5,6-Di(Pergamon-elsevier Science Ltd, 2019) El Hag, Rabia; Abdusalam, Mohamed Musbah; Acilan, Ceyda; Kayi, Hakan; Ozalp-Yaman, SenizA new Pt(II) complex of the general formula ([PtCl2(L)]center dot H2O), where L is 5,6-di-2-thienyl-2,3-dihydropyrazine is synthesized as a potential antitumor agent and its structure is elucidated using a variety of physical and chemical procedures. DNA attaching ability of the complex is studied spectroscopically. UV and fluorometric titration, viscometric measurements and thermal decomposition studies agreed that two binding mode of actions, covalent and non-covalent bindings, are possible simultaneously. DNA helix cleavage studies clearly indicated OH center dot radical pathway in the presence of the reducing agent. Quantum mechanical calculations are carried out to call the minimum energy structures of the ligand and the complex, and to determine the FTIR, H-1 NMR and UV-Vis spectra using the density functional theory (DFT) at the B3LYP/LANL2DZ level of theory. Calculated geometrical parameters for the complex indicated a square-planar structure around the metallic center through the dithiopyridyl ring and two chlorine atoms. The minimum energy structure of the complex obtained from DFT conformational analysis is used in docking studies to investigate complex-DNA binding mechanisms. The complex interacts with DNA through three different mechanisms, namely, intercalation, covalent and electrostatic interaction. The most stable mode of interaction with lowest binding energy (-333.6 kcal/mol) was intercalation mode. Comparisons between theoretical and experimental findings are performed and a good agreement is obtained. (C) 2019 Elsevier Ltd. All rights reserved.

