Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Optical Characterization of the Mgo/Inse Interface
    (Wiley-v C H verlag Gmbh, 2015) Kayed, T. S.; Qasrawi, A. F.; Elsayed, Khaled A.
    In this work, a 500nm thick MgO layer deposited on the physically evaporated amorphous InSe thin film substrate is designed as a window for the MgO/InSe terahertz resonators. The optical properties including the reflectance and the dielectric constant dependence on the angle of incidence ((i)), the normal transmittance, and the absorption coefficient of the interface were investigated in the range of approximate to 270-1000THz. It was observed that the total reflectivity of the substrate continuously decreases with increasing (i) in the range of 33-80 degrees. The spectra of InSe and MgO/InSe revealed strong dielectric resonance patterns below 450THz. The energy bands of the direct allowed transitions in InSe film shrunk from 3.90, 2.75, and 1.49eV to 3.71, 2.10, and 0.96eV when MgO was deposited onto the InSe film. By analyzing the dielectric spectra, we were able to determine the static and lattice dielectric constants in addition to the oscillator and dispersion energies. The latter energy increased from 27.43 to 35.84 via interface construction.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 4
    Properties of Se/Inse Thin-Film Interface
    (Springer, 2016) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Kayed, T. S.; Elsayed, Khaled A.; Kayed, Tarek Said; Qasrawı, Atef Fayez Hasan; Kayed, Tarek Said; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    Se, InSe, and Se/InSe thin films have been prepared by the physical vapor deposition technique at pressure of similar to 10(-5) torr. The structural, optical, and electrical properties of the films and Se/InSe interface were investigated by means of x-ray diffraction (XRD) analysis, ultraviolet-visible spectroscopy, and current-voltage (I-V) characteristics. XRD analysis indicated that the prepared InSe films were amorphous while the Se films were polycrystalline having hexagonal structure with unit cell parameters of a = 4.3544 and c = 4.9494 . Spectral reflectance and transmittance analysis showed that both Se and InSe films exhibited indirect allowed transitions with energy bandgaps of 1.92 eV and 1.34 eV, respectively. The Se/InSe interface exhibited two energy bandgaps of 0.98 eV and 1.73 eV above and below 2.2 eV, respectively. Dielectric constant values were also calculated from reflectance spectra for the three layers in the frequency range of 500 THz to 272 THz. The dielectric constant exhibited a promising feature suggesting use of the Se/InSe interface as an optical resonator. Moreover, the Au/Se/InSe/Ag heterojunction showed some rectifying properties that could be used in standard optoelectronic devices. The ideality factor and height of the energy barrier to charge carrier motion in this device were found to be 1.72 and 0.66 eV, respectively.