2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 4Citation - Scopus: 4Band Offsets and Optical Conduction in the Cdse/Gase Interface(Elsevier Science Bv, 2016) Kayed, T. S.; Qasrawi, A. F.; Elsayed, Khaled A.In this work, the design and characterization of CdSe/GaSe heterojunction is considered. The CdSe/GaSe thin film interface was prepared by the physical vapor deposition technique. Systematic structural and optical analysis were performed to explore the crystalline nature, the optical band gaps, the conduction and valence band offsets, the dielectric spectra, and the frequency dependent optical conductivity at terahertz frequencies. The X-ray diffraction analysis revealed a polycrystalline interface that is mostly dominated by the hexagonal CdSe oriented in the (002) direction. It was also found that the CdSe/GaSe interface exhibits conduction and valence band offsets of 1.35 and 1.23/1.14 eV, respectively. The dielectric spectra displayed two dielectric resonance peaks at 530 and 445 THz. Moreover, the computational fittings of the optical conductivity of the interface revealed a free carrier scattering time of 0.41 (fs) for a free carrier density of 7.0 x 10(18) (cm(-3)). The field effect mobility for the CdSe/GaSe interface was found to be 5.22 (cm(2)/Vs). The remarkable features of this device having large band offsets and qualitative optical conduction dominated by a scattering time in the order of femtoseconds in addition to the dielectric property nominate the device to be used in optoelectronic technology. (C) 2016 Elsevier B.V. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 4Properties of Se/Inse Thin-Film Interface(Springer, 2016) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Kayed, T. S.; Elsayed, Khaled A.; Kayed, Tarek Said; Qasrawı, Atef Fayez Hasan; Kayed, Tarek Said; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringSe, InSe, and Se/InSe thin films have been prepared by the physical vapor deposition technique at pressure of similar to 10(-5) torr. The structural, optical, and electrical properties of the films and Se/InSe interface were investigated by means of x-ray diffraction (XRD) analysis, ultraviolet-visible spectroscopy, and current-voltage (I-V) characteristics. XRD analysis indicated that the prepared InSe films were amorphous while the Se films were polycrystalline having hexagonal structure with unit cell parameters of a = 4.3544 and c = 4.9494 . Spectral reflectance and transmittance analysis showed that both Se and InSe films exhibited indirect allowed transitions with energy bandgaps of 1.92 eV and 1.34 eV, respectively. The Se/InSe interface exhibited two energy bandgaps of 0.98 eV and 1.73 eV above and below 2.2 eV, respectively. Dielectric constant values were also calculated from reflectance spectra for the three layers in the frequency range of 500 THz to 272 THz. The dielectric constant exhibited a promising feature suggesting use of the Se/InSe interface as an optical resonator. Moreover, the Au/Se/InSe/Ag heterojunction showed some rectifying properties that could be used in standard optoelectronic devices. The ideality factor and height of the energy barrier to charge carrier motion in this device were found to be 1.72 and 0.66 eV, respectively.

