Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Band Offsets and Optical Conduction in the Cdse/Gase Interface
    (Elsevier Science Bv, 2016) Kayed, T. S.; Qasrawi, A. F.; Elsayed, Khaled A.
    In this work, the design and characterization of CdSe/GaSe heterojunction is considered. The CdSe/GaSe thin film interface was prepared by the physical vapor deposition technique. Systematic structural and optical analysis were performed to explore the crystalline nature, the optical band gaps, the conduction and valence band offsets, the dielectric spectra, and the frequency dependent optical conductivity at terahertz frequencies. The X-ray diffraction analysis revealed a polycrystalline interface that is mostly dominated by the hexagonal CdSe oriented in the (002) direction. It was also found that the CdSe/GaSe interface exhibits conduction and valence band offsets of 1.35 and 1.23/1.14 eV, respectively. The dielectric spectra displayed two dielectric resonance peaks at 530 and 445 THz. Moreover, the computational fittings of the optical conductivity of the interface revealed a free carrier scattering time of 0.41 (fs) for a free carrier density of 7.0 x 10(18) (cm(-3)). The field effect mobility for the CdSe/GaSe interface was found to be 5.22 (cm(2)/Vs). The remarkable features of this device having large band offsets and qualitative optical conduction dominated by a scattering time in the order of femtoseconds in addition to the dielectric property nominate the device to be used in optoelectronic technology. (C) 2016 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Al/Cdse Resonant Tunneling Thin Film Transistors
    (Elsevier Science Bv, 2017) Qasrawi, A. F.; Kayed, T. S.; Elsayed, Khaled A.
    An Al/CdSe/GaSe/C thin film transistor device was prepared by the physical vapor deposition technique at a vacuum pressure of 10(-5) mbar. The x-ray diffraction measurements demonstrated the polycrystalline nature of the surface of the device. The de current-voltage characteristics recorded for the Al/CdSe/C and Al/CdSe/GaSe/C channels displayed a resonant tunneling diode features during the forward and reverse voltage biasing, respectively. In addition, the switching current ratio of the Al/CdSe/C increased from 18.6 to 9.62x10(3) as a result of the GaSe deposition on the CdSe surface. Moreover, the alternating electrical signal analyses in the frequency range of 1.0 MHz to 1.8 GHz, showed some remarkable properties of negative resistance and negative capacitance spectra of the AVCdSe/GaSe/C thin film transistors. Two distinct resonance-antiresonance phenomena in the resistance spectra and one in the capacitance spectra were observed at 0.53, 1.04 and 1.40 GHz for the Al/CdSe/C channel, respectively. The respective resonating peak positions of the resistance spectra shift to 0.38 and 0.95 GHz when GaSe is interfaced with CdSe. These features of the thin film transistors are promising for use in high quality microwave filtering circuits and also for use as ultrafast switches.