Search Results

Now showing 1 - 2 of 2
  • Master Thesis
    Makine Öğrenmesi Algoritmalarının Oyun Seviyelerinin Zorluklarının Belirlenmesinde Kullanılması
    (2020) Şahbenderoğlu, Turan Ozan; Karakaya, Ziya
    In game design, adjusting difficulty is one of the key aspects of financial success. However, this task is costly since it is time-consuming. In the literature, there are very limited studies according to determining the game difficulty. Instead, almost every study is about difficulty adjustment which skips the determining process. This thesis aims to develop a game environment to observe if the machine learning can determine the difficulty of a game and the game levels. For this purpose, a game with five different levels from easy to hard is developed in Unity Engine. A machine learning agent that uses reinforcement learning is also developed and each game level used as learning environment of the agent. In general, the learning process shows that the Cumulative Reward of the agents is decreased as levels become harder. The complexity of the game significantly decreases Cumulative Rewards. The results of this thesis have shown that those level difficulties of a game can be determined by comparing the reinforcement learning agent's performance on collecting rewards in the training area. In other words, machine learning algorithms have a big potential to support the game design phase of the game development process when it comes to determining the level of difficulties.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Real-Time Anomaly Detection System Within the Scope of Smart Factories
    (Springer, 2023) Bayraktar, Cihan; Karakaya, Ziya; Gokcen, Hadi
    Anomaly detection is the process of identifying patterns that move differently from normal in a certain order. This process is considered one of the necessary measures for the safety of intelligent production systems. This study proposes a real-time anomaly detection system capable of using and analyzing data in smart production systems consisting of interconnected devices. Synthetic data were preferred in the study because it has difficulties such as high cost and a long time to obtain real anomaly data naturally for learning and testing processes. In order to obtain the necessary synthetic data, a simulation was developed by taking the popcorn production systems as an example. Multi-class anomalies were defined in the obtained data set, and the analysis performances were tested by creating learning models with AutoML libraries. In the field of production systems, while studies on anomaly detection generally focus on whether there is an anomaly in the system, it is aimed to determine which type of anomaly occurs in which device, together with the detection of anomaly by using multi-class tags in the data of this study. As a result of the tests, the Auto-Sklearn library presented the learning models with the highest performance on all data sets. As a result of the study, a real-time anomaly detection system was developed on dynamic data by using the obtained learning models.