Search Results

Now showing 1 - 3 of 3
  • Conference Object
    Citation - WoS: 28
    A Comparison of Stream Processing Frameworks
    (Ieee, 2017) Karakaya, Ziya; Yazici, Ali; Alayyoub, Mohammed
    This study compares the performance of Big Data Stream Processing frameworks including Apache Spark, Flink, and Storm. Also, it measures the resource usage and performance scalability of the frameworks against a varying number of cluster sizes. It has been observed that, Flink outperforms both Spark and Storm under equal constraints. However, Spark can be optimized to provide the higher throughput than Flink with the cost of higher latency.
  • Conference Object
    Systematic Mapping for Big Data Stream Processing Frameworks
    (Ieee, 2016) Alayyoub, Mohammed; Yazici, Ali; Karakaya, Ziya
    There has been lots of discussions about the choice of a stream processing framework (SPF) for Big Data. Each of the SPFs has different cutting edge technologies in their steps of processing the data in motion that gives them a better advantage over the others. Even though, the cutting edge technologies used in each stream processing framework might better them, it is still hard to say which framework bests the rest under different scenarios and conditions. in this study, we aim to show trends and differences about several SPFs for Big Data by using the Systematic Mapping (SM) approach. To achieve our objectives, we raise 6 research questions (RQs), in which 91 studies that conducted between 2010 and 2015 were evaluated. We present the trends by classifying the research on SPFs with respect to the proposed RQs which can help researchers to obtain an overview of the field.
  • Conference Object
    Citation - Scopus: 2
    Systematic Mapping for Big Data Stream Processing Frameworks
    (Institute of Electrical and Electronics Engineers Inc., 2016) Alayyoub,M.; Yazıcı, Ali; Yazici,A.; Karakaya,Z.; Karakaya, Ziya; Yazıcı, Ali; Karakaya, Ziya; Software Engineering; Computer Engineering; Software Engineering; Computer Engineering
    There has been lots of discussions about the choice of a stream processing framework (SPF) for Big Data. Each of the SPFs has different cutting edge technologies in their steps of processing the data in motion that gives them a better advantage over the others. Even though, the cutting edge technologies used in each stream processing framework might better them, it is still hard to say which framework bests the rest under different scenarios and conditions. In this study, we aim to show trends and differences about several SPFs for Big Data by using the Systematic Mapping (SM) approach. To achieve our objectives, we raise 6 research questions (RQs), in which 91 studies that conducted between 2010 and 2015 were evaluated. We present the trends by classifying the research on SPFs with respect to the proposed RQs which can help researchers to obtain an overview of the field. © 2016 IEEE.