Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 47
    Citation - Scopus: 66
    Deep Learning Based Fall Detection Using Smartwatches for Healthcare Applications
    (Elsevier Sci Ltd, 2022) Sengul, Gokhan; Karakaya, Murat; Misra, Sanjay; Abayomi-Alli, Olusola O.; Damasevicius, Robertas
    We implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activityout cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 7
    Deadline-Aware Energy-Efficient Query Scheduling in Wireless Sensor Networks With Mobile Sink
    (Hindawi Ltd, 2013) Karakaya, Murat
    Mobile sinks are proposed to save sensor energy spent for multihop communication in transferring data to a base station (sink) in Wireless Sensor Networks. Due to relative low speed of mobile sinks, these approaches are mostly suitable for delay-tolerant applications. In this paper, we study the design of a query scheduling algorithmfor query-based data gathering applications using mobile sinks. However, these kinds of applications are sensitive to delays due to specified query deadlines. Thus, the proposed scheduling algorithm aims to minimize the number of missed deadlines while keeping the level of energy consumption at the minimum.