Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 25
    Citation - Scopus: 31
    Discrete Lissajous Figures and Applications
    (Ieee-inst Electrical Electronics Engineers inc, 2014) Karacor, Deniz; Nazlibilek, Sedat; Sazli, Murat H.; Akarsu, Eyup S.
    In this paper, an innovative method based on an algorithm utilizing discrete convolutions of discrete-time functions is developed to obtain and represent discrete Lissajous and recton functions. They are actually discrete auto- and cross-correlation functions. The theory of discrete Lissajous figures is developed. The concept of rectons is introduced. The relation between the discrete Lissajous figures and autocorrelation functions is set. Some applications are described including phase, frequency, and period determination of periodic signals, time-domain characteristics (such as damping ratio) of a control system, and abnormality and spike detection within a signal, are described. In addition, an electrocardiogram signal with an abnormality of atrial fibrillation is given for abnormality detection by means of recton functions. An epileptic activity detection within an electroencephalography signal is also given.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 12
    A Magnetic Measurement System and Identification Method for Buried Magnetic Materials Within Wet and Dry Soils
    (Ieee-inst Electrical Electronics Engineers inc, 2016) Ege, Yavuz; Nazlibilek, Sedat; Kakilli, Adnan; Citak, Hakan; Kalender, Osman; Erturk, Korhan Levent; Karacor, Deniz
    In this paper, a new magnetic measurement system is developed to determine upper surfaces of buried magnetic materials, particularly land mines. This measurement system uses the magnetic-anomaly-detection method. It also has intelligent identification software based on an image matching algorithm. It is aimed to determine and identify the buried ferromagnetic materials with minimum energy consumption. It is concentrated on the detection and identification of the shapes of upper surfaces of buried magnetic materials in dry and wet conditions. The effect of humidity in the detection process for detection is tested. In this paper, we used sensor images to identify various ferromagnetic materials and similar objects. Sensor images of soils at various humidities covering the objects were obtained. We used the speeded-up-feature-transform algorithm in the comparison process of the images. Dry soil sample images match with the corresponding wet soil samples with the highest matching rate. The images for different objects can easily be distinguished by the matching process.