Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 11
    Citation - Scopus: 12
    A Magnetic Measurement System and Identification Method for Buried Magnetic Materials Within Wet and Dry Soils
    (Ieee-inst Electrical Electronics Engineers inc, 2016) Ege, Yavuz; Nazlibilek, Sedat; Kakilli, Adnan; Citak, Hakan; Kalender, Osman; Erturk, Korhan Levent; Karacor, Deniz
    In this paper, a new magnetic measurement system is developed to determine upper surfaces of buried magnetic materials, particularly land mines. This measurement system uses the magnetic-anomaly-detection method. It also has intelligent identification software based on an image matching algorithm. It is aimed to determine and identify the buried ferromagnetic materials with minimum energy consumption. It is concentrated on the detection and identification of the shapes of upper surfaces of buried magnetic materials in dry and wet conditions. The effect of humidity in the detection process for detection is tested. In this paper, we used sensor images to identify various ferromagnetic materials and similar objects. Sensor images of soils at various humidities covering the objects were obtained. We used the speeded-up-feature-transform algorithm in the comparison process of the images. Dry soil sample images match with the corresponding wet soil samples with the highest matching rate. The images for different objects can easily be distinguished by the matching process.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    A Study on the Performance of Magnetic Material Identification System by Sift-Brisk and Neural Network Methods
    (Ieee-inst Electrical Electronics Engineers inc, 2015) Ege, Yavuz; Nazlibilek, Sedat; Kakilli, Adnan; Citak, Hakan; Kalender, Osman; Karacor, Deniz; Sengul, Gokhan
    Industry requires low-cost, low-power consumption, and autonomous remote sensing systems for detecting and identifying magnetic materials. Magnetic anomaly detection is one of the methods that meet these requirements. This paper aims to detect and identify magnetic materials by the use of magnetic anomalies of the Earth's magnetic field created by some buried materials. A new measurement system that can determine the images of the upper surfaces of buried magnetic materials is developed. The system consists of a platform whose position is automatically controlled in x-axis and y-axis and a KMZ51 anisotropic magneto-resistive sensor assembly with 24 sensors mounted on the platform. A new identification system based on scale-invariant feature transform (SIFT)-binary robust invariant scalable keypoints (BRISKs) as keypoint and descriptor, respectively, is developed for identification by matching the similar images of magnetic anomalies. The results are compared by the conventional principal component analysis and neural net algorithms. On the six selected samples and the combinations of these samples, 100% correct classification rates were obtained.