Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Performance of Boron Nitride Coated Tools and Dies
    (Univ Maribor, Fac Mechanical Engineering, 2013) Kaftanoglu, B.; Dokmetas, N.
    Boron nitride (BN) has been utilized as a significant coating material for cutting tool applications due to its excellent mechanical and chemical properties. Cutting tools, molds and machine parts are coated with BN with the coating system using a sputtering technology - a physical vapour deposition (PVD) process. Design and manufacture of the equipment is made locally. Physical, mechanical and tribological properties such as thickness, friction coefficient, wear, and adhesion are measured by using calotest, tribometer, profilometer, micro and macro scratch test, and nanohardness devices. The results of characterization of the coatings show that wear resistance and hardness increase and BN coatings provide increased efficiency by creating a value-added manufacturing. In this case, the use of BN-coated tools in machining is expected to be one of the best solutions. (C) 2013 PEI, University of Maribor. All rights reserved.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 13
    Analysis of Non-Isothermal Warm Deep Drawing of Dual-Phase Dp600 Steel
    (Springer France, 2019) Pepelnjak, T.; Kayhan, E.; Kaftanoglu, B.
    Improving the formability of the material is a key issue in the deep drawing process. Heating the material above its recrystallization temperature drastically increases formability, but in the case of dual phase (DP) steels, it results in a loss of their mechanical properties. To improve the drawing ratio, only the heating of the flange region in the warm temperature range up to 573K was studied on DP600 sheet steel by numerical simulation. A thermo-elastic-plastic finite element method (FEM) analysis of deep drawing at several drawing ratios was performed and compared with experimental results. During the experiments, the flange area of the blank was heated by induction heating, and the central part over the punch was cooled with spray water. Experimental results showed that limiting drawing ratio could be increased by 25.58%. The microstructure of the DP 600 steel was analyzed before and after the warm forming process. No significant changes were observed, and the high strength properties of the DP 600 steel remained intact. There was good agreement between numerical and experimental results.