Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 10
    Citation - Scopus: 13
    Electromagnetic Launching Systems To Geosynchronously Equatorial Orbit in Space and Cost Calculations
    (Ieee-inst Electrical Electronics Engineers inc, 2017) Inger, Erk; Inger, Erk
    Electromagnetic launching mass driver system (projectile) has been examined and evaluated as an eligible alternative to the chemical propulsion systems, in space transportation. The projectile has been arranged to reach to its orbital speed at delivered altitude, with an energy transferred externally to a projectile all the flyway through the electromagnetic launcher. The multistage electromagnetic launcher structure contains the capacitors for storing energy and transfers this energy through a switching inductor to a mass driver. The mass driver is synchronously being energized by a voltage through an oscillating coil-capacitor circuit. This paper presents dependence and optimization of design and performance parameters of coilgun equations. Cost estimations of electromagnetic launching system are also calculated in energy per unit mass.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Mass Driver Design Traveling Earth to the Moon
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Inger, Erk; Inger, Erk
    In this article, the flight of a mass driver was designed for launch from the Earth with Electro Magnetic Space Launching System (EMSLS). Then the orbit exit from the Earth at 185 km and orbit entry the Moon at 100kmwere examined with respect to change of trajectories by using chemical fuel and the engine in the mass driver. Electromagnetically launched mass drivers should orbit with a specified orbital velocity at a designated altitude. In this paper, the energy is transferred externally to a mass driver throughout the flight path the electromagnetic coil system called multistage (EMSLS) designated in order to achieve the specified orbital velocity. The mass driver is synchronously accelerated by a voltage through the capacitors which are used for storing energy. This energy is transferred through a switching inductor to the circuit of the mass driver so that the mass driver is launched into the orbit with a muzzle velocity. However, this fact creates high air drag energy losses due to atmospheric conditions and high velocity obtained in EMSLS. Thus, in the mass driver at 21km altitude an engine starts to increase the velocity of the system to reach orbital velocity. The final aim of this article is to capture the transfer of $\Delta \text{v}$ cost for traveling to the Moon. At any given arrival time in order to guide the system, designers only consider the gravity of the Earth and gravity of the Moon by using a Direct Lunar Transfer Trajectory for the Earth to the Moon approach. Finally, EMSLS was evaluated as a more advantageous and complimentary alternative to chemical propulsion systems for space transportation.