Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 143
    Citation - Scopus: 157
    Donor-Acceptor Polymer Electrochromes With Tunable Colors and Performance
    (Amer Chemical Soc, 2010) Icli, Merve; Pamuk, Melek; Algi, Fatih; Onal, Ahmet M.; Cihaner, Atilla
    To demonstrate the effect of donor (D) and acceptor (A) units on the structure property relationships of electrochromic polymers, design, synthesis, characterization and polymerization of a series of D A type systems, 1-5, based on thiophene, 3,4-ethylenedioxythiophene, and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine as D units and 2,1,3-benzoselenadiazole, 2,1,3-benzothiadiazole and 2-decyl-2H-benzo[d][1,2,3]triazole as A units are highlighted. It is found that these units play key roles on the redox behavior, band gap, neutral state color, and the electrochromic performance (stability, optical contrast, coloration efficiency, and switching time) of the system. It is noted that electropolymerization of these D-A systems provides processable low band gap electrochromes, P1-P5, exhibiting high redox stability, coloration efficiency, transmittance and/or contrast ratio and low response time. Furthermore, P1-P5 reflect various hues of blue and green pallets of the RGB color-space in the neutral state. In particular, it is noteworthy that P5 is an excellent blue-to-colorless polymeric electrochrome, which, to our best knowledge, exhibits the highest optical contrast and coloration efficiency among the D A type systems. The panoramic breadth of the neutral state colors and intriguing features of these polymeric materials further confirm that D A approach allows engineering tunable electrochromes, which hold promise for commercialization of polymeric ROB electrochromics.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 9
    Anodic Polymerization of 2,5-Di in Ethanol
    (Pergamon-elsevier Science Ltd, 2007) Icli, Merve; Cihaner, Atilla; Cihaner, Atilla; Oenal, Ahmet A.; Cihaner, Atilla; Chemical Engineering; Chemical Engineering
    Poly(2,5-di-(2-thienyl)-furan) (PSOS) was synthesized via anodic polymerization of 2,5-di-(2-thienyl)-furan (SOS) in ethanol solution containing 0.2 M LiClO4 as supporting electrolyte. The electrochemical and spectroelectrochemical properties were investigated using electroanalytical and UV-vis spectroscopic techniques, respectively. The band gap of the polymer film was found as 2.22 eV and the film was successfully switched between black oxidized state and orange neutral state. Fluorescence and electrochemical impedance spectroscopy (EIS) studies were also performed. (C) 2007 Elsevier Ltd. All rights reserved.