3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 8Citation - Scopus: 7Structural and Optical Characteristics of Thermally Evaporated Tlgase2 Thin Films(Elsevier, 2022) Isik, M.; Işık, Mehmet; Karatay, A.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringThe present paper reports the structural and optical properties of thermally evaporated TlGaSe2 thin films. X-ray diffraction pattern of evaporated film presented two diffraction peaks around 24.15 and 36.00 degrees which are associated with planes of monoclinic unit cell. Surface morphology of the TlGaSe2 thin films was investigated by scanning electron and atomic force microscopy techniques. Although there was observed some ignorable amount of clusters of quasi-spherical shape in the scanning electron microscope image, the film surface was observed almost uniform. Raman spectrum exhibited six peaks around 253, 356, 488, 800, 1053 and 1440 cm(-1) associated with possible vibrational mode combinations. Band gap energy of the thin film was determined as 3.01 eV from the analyses of transmission spectrum. Transmission spectrum presented strong Urbach tail and analyses of corresponding region resulted in Urbach energy of 0.66 eV. The structural and optical properties of deposited TlGaSe2 thin films were compared with those of single crystal. This comparison would provide valuable information about influence of thickness on the studied compounds.Article Citation - WoS: 12Citation - Scopus: 12First Principles Study of Bi12geo20< Electronic, Optical and Thermodynamic Characterizations(Elsevier, 2021) Isik, M.; Işık, Mehmet; Surucu, G.; Gencer, A.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringBismuth germanium oxide (Bi12GeO20) is one of the attractive members of sillenite compounds having fascinating photorefractive characteristics. The electronic, optical and thermodynamic properties of Bi12GeO20 were investigated using density functional theory (DFT) calculations. The experimental and calculated X-ray diffraction patterns were obtained as well-consistent with each other. The lattice constant of the cubic crystalline structure of Bi12GeO20 compound was calculated as 10.304 angstrom. The electronic band structure and partial density of states plots were reported and contribution of constituent atoms (Bi12GeO20) to the valence and conduction bands was presented. The band gap energy of the Bi12GeO20 was calculated as 3.20 eV. This wide direct band gap energy provides Bi12GeO20 significant potential in ultraviolet applications. The spectra of real and imaginary components of dielectric function, refractive index, extinction coefficient and absorption coefficient were drawn in the 0-10 eV energy range. Temperature-dependent heat capacity plot indicated the Dulong-Petit limit as 825 J/mol.K. The results of the present study would present worthwhile information to device application areas of Bi12GeO20 compound.Article Citation - WoS: 3Citation - Scopus: 2Characterization of Linear and Nonlinear Optical Properties of Nabi(wo4)2 Crystal by Spectroscopic Ellipsometry(Elsevier, 2024) Isik, M.; Işık, Mehmet; Guler, I.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringNaBi(WO4)2 compound has been a material of considerable attention in optoelectronic applications. The present research, in which we examined the linear and nonlinear optical properties of NaBi(WO4)2 crystal using the spectroscopic ellipsometry method, elucidates the optical behavior of the crystal in detail. Our work provides a sensitive approach to determine the spectral characteristic of the crystal. The spectral dependence of various optical parameters such as refractive index, extinction coefficient, dielectric function and absorption coefficient was reported in the range of 1.2-5.0 eV. Optical values such as bandgap energy, critical point energy, single oscillator parameters were obtained as a result of the analyses. In addition to linear optical properties, we also investigated the nonlinear optical behavior of NaBi(WO4)2 and shed new light on the potential applications of the crystal. Absorbance and photoluminescence spectra of the crystal were also reported to characterize optical, electronic and emission behavior of the compound. Our findings may form the basis for a number of technological applications such as optoelectronic devices, frequency conversion, and optical sensors. This research contributes to a better understanding of the optical properties of NaBi(WO4)2 crystal, highlighting the material's role in future optical and electronic technologies.

