Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 3
    Instability Intervals of a Hill's Equation With Piecewise Constant and Alternating Coefficient
    (Pergamon-elsevier Science Ltd, 2004) Guseinov, GS; Karaca, IY
    In this paper, we obtain asymptotic formulas for eigenvalues of the periodic and the semiperiodic boundary value problems associated with a Hill's equation having piecewise constant and alternating coefficient. As a corollary, it is shown that the lengths of instability intervals of the considered Hill's equation tend to infinity. (C) 2004 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 29
    Citation - Scopus: 30
    Boundary Value Problems for Second Order Nonlinear Differential Equations on Infinite Intervals
    (Academic Press inc Elsevier Science, 2004) Guseinov, GS; Yaslan, I
    In this paper, we consider boundary value problems for nonlinear differential equations on the semi-axis (0, infinity) and also on the whole axis (-infinity, infinity), under the assumption that the left-hand side being a second order linear differential expression belongs to the Weyl limit-circle case. The boundary value problems are considered in the Hilbert spaces L-2(0, infinity) and L-2(-infinity, infinity), and include boundary conditions at infinity. The existence and uniqueness results for solutions of the considered boundary value problems are established. (C) 2003 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 281
    Citation - Scopus: 309
    Integration on Time Scales
    (Academic Press inc Elsevier Science, 2003) Guseinov, GS; Hüseyin, Hüseyin Şirin; Hüseyin, Hüseyin Şirin; Mathematics; Mathematics
    In this paper we study the process of Riemann and Lebesgue integration oil time scales. The relationship of the Riemann and Lebesgue integrals is considered and a criterion for Riemann integrability is established. (C) 2003 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 79
    Citation - Scopus: 86
    Lyapunov inequalities for discrete linear Hamiltonian systems
    (Pergamon-elsevier Science Ltd, 2003) Guseinov, GS; Kaymakçalan, B
    In this paper, we present some Lyapunov type inequalities for discrete linear scalar Hamiltonian systems when the coefficient c(t) is not necessarily nonnegative valued and when the end-points are not necessarily usual zeros, but rather, generalized zeros. Applying these inequalities, we obtain some disconjugacy and stability criteria for discrete Hamiltonian systems. (C) 2003 Elsevier Science Ltd. All rights reserved.