Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 10
    Citation - Scopus: 7
    Fabrication and Characterization of Tio2 Thin Film for Device Applications
    (World Scientific Publ Co Pte Ltd, 2019) Hosseini, A.; Gullu, H. H.; Coskun, E.; Parlak, M.; Ercelebi, C.
    Titanium oxide (TiO2) film was deposited by rectification factor (RF) magnetron sputtering technique on glass substrates and p-Si (111) wafers to fabricate n-TiO2/p-Si heterojunction devices for the investigation of material and device properties, respectively. The structural, surface morphology, optical and electrical properties of TiO(2 )film were characterized by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), UV-visual (UV-Vis) spectral and dark current-voltage (I-V) measurement analyses. The deposited film layer was found to be homogeneous structure with crack-free surface. The bandgap value of TiO2 film was determined as 3.6 eV and transmission was around 65-85% in the spectral range of 320-1100 nm. The conductivity type of the deposited film was determined as n-type by hot probe method. These values make TiO2 film a suitable candidate as the n-type window layer in possible diode applications. TiO2 film was also deposited on p-Si (111) wafer to obtain Al/n-TiO2/p-Si/Al heterojunction device structure. The dark I-V characteristic was studied to determine the possible conduction mechanisms and diode parameters.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 1
    Investigation of Conductivity Characteristics of Zn-In Thin Films
    (World Scientific Publ Co Pte Ltd, 2020) Gullu, H. H.; Parlak, M.
    Zn-In-Se thin films were fabricated on the ultrasonically cleaned glass substrates masked with clover-shaped geometry by thermal evaporation of its elemental sources. Temperature-dependent conductivity characteristics of the films were investigated under dark and illuminated conditions. The semiconductor type of the films was found as n-type by thermal probe test. According to the van der Pauw technique, the dark electrical conductivity analyses showed that the variations of conductivity of unannealed and annealed at 300 degrees C samples are in exponential dependence of temperature. These conductivity profiles were found to be dominated by the thermionic emission at high temperature region whereas their behaviors at low temperatures were modeled by hopping theory. On the contrary, as a result of the further annealing temperatures, the surface of the samples showed semi-metallic characteristics with deviating from expected Arrhenius behavior. In addition, the temperature-dependent photoconductivity of the films was analyzed under different illumination intensities and the results were explained by the supra-linear characteristic based on the two-center recombination model.